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Selecting a Maximally Informative Set of Single-Nucleotide Polymorphisms
for Association Analyses Using Linkage Disequilibrium
Christopher S. Carlson,1 Michael A. Eberle,2 Mark J. Rieder,1 Qian Yi,1 Leonid Kruglyak,2,3
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Common genetic polymorphisms may explain a portion of the heritable risk for common diseases. Within candidate
genes, the number of common polymorphisms is finite, but direct assay of all existing common polymorphism is
inefficient, because genotypes at many of these sites are strongly correlated. Thus, it is not necessary to assay all
common variants if the patterns of allelic association between common variants can be described. We have developed
an algorithm to select the maximally informative set of common single-nucleotide polymorphisms (tagSNPs) to
assay in candidate-gene association studies, such that all known common polymorphisms either are directly assayed
or exceed a threshold level of association with a tagSNP. The algorithm is based on the r2 linkage disequilibrium
(LD) statistic, because r2 is directly related to statistical power to detect disease associations with unassayed sites.
We show that, at a relatively stringent r2 threshold ( ), the LD-selected tagSNPs resolve 180% of all haplotypes2r 1 0.8
across a set of 100 candidate genes, regardless of recombination, and tag specific haplotypes and clades of related
haplotypes in nonrecombinant regions. Thus, if the patterns of common variation are described for a candidate
gene, analysis of the tagSNP set can comprehensively interrogate for main effects from common functional variation.
We demonstrate that, although common variation tends to be shared between populations, tagSNPs should be
selected separately for populations with different ancestries.

Introduction

SNPs represent the most frequent form of polymorphism
in the human genome. In multiple-gene surveys, esti-
mates of nucleotide diversity in the human genome range
between and differences per base�4 �43.7 # 10 8.3 # 10
pair (Wang et al. 1998; Cambien et al. 1999; Cargill et
al. 1999; Halushka et al. 1999; Sachidanandam et al.
2001; Stephens et al. 2001a). From these and other stud-
ies of nucleotide diversity, it has been estimated that a
common SNP (an SNP with a minor-allele frequency

) occurs once every ∼600 bp (Kruglyak[MAF] 1 10%
and Nickerson 2001). Given that the average gene in
the human genome spans ∼27 kb (Lander et al. 2001;
Venter et al. 2001), ∼50 common polymorphisms may
be present in such a gene.

Although the number of common variants per gene
is finite, the throughput of current genotyping technolo-
gies is inadequate for genotyping all existing common
variants in all but the smallest of genes (Nickerson et
al. 2000). Consequently, the issue of how to select a
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maximally informative set of common polymorphisms
(tagSNPs) for association analyses is generating consid-
erable interest; early publications on this topic focused
on simply resolving common haplotypes (Johnson et al.
2001), and more quantitative methods have been de-
scribed that minimize the number of tagSNPs required
for this task (Zhang et al. 2002b; Ackerman et al. 2003;
Ke and Cardon 2003; Meng et al. 2003). However, the
relationship between tagSNPs selected for haplotype
resolution and power to detect disease risk associated
with existing polymorphism has been addressed only par-
tially, by use of methods for maximizing haplotype in-
formation content for a given number of markers (Zhang
et al. 2002a; Stram et al. 2003; Weale et al. 2003).

Genotypes at common SNPs !10 kb apart tend to be
correlated; linkage disequilibrium (LD) describes the re-
lationship between genotypes at a pair of polymorphic
sites. Several popular statistics exist for describing LD;
the two most frequently used are D′ and r2 (sometimes
referred to as “D2”) (Devlin and Risch 1995). ′FD F p

if neither site has experienced recurrent mutation or1
gene conversion and if there has been no recombination
between the sites. “ ” can be described as “com-′FD F p 1
plete LD,” because the allelic association is as strong as
possible, given the allele frequencies at the two sites.
However, genotypes can be perfectly correlated between
sites only if their MAFs are the same. Only when geno-
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types are perfectly correlated does , which can be2r p 1
described as “perfect LD.”

To date, most candidate-gene studies have directly an-
alyzed the association between disease status and a small
number of candidate SNPs that have known or predicted
functional consequences (Collins et al. 1997; Botstein and
Risch 2003). That study design can easily determine
whether a given variant confers significant risk of disease.
An alternative to direct analysis of functional SNPs in
candidate genes is indirect analysis by use of a dense set
of assayed SNPs (Collins et al. 1997). Indirect analysis
does not require a priori identification of functional
SNPs; rather, it assumes that genotypes at unassayed,
risk-related SNPs will be correlated with one or more
assayed SNPs. Statistical power to detect unassayed, dis-
ease-associated polymorphisms depends on the correla-
tion (r2) between the unassayed site and an assayed site.
The relationship between r2 and power is relatively simple
to calculate, given an r2 between an assayed polymor-
phism and a disease-associated polymorphism. The
power to detect the disease-associated polymorphism in-
directly in N samples is equivalent to power to detect it
directly in Nr2 samples (Pritchard and Przeworski 2001).

We have developed a simple greedy algorithm for
identifying sets of tagSNPs in a candidate gene, such that
all polymorphisms above a specified frequency thresh-
old either are directly assayed or exceed a specified level
of r2 with an assayed polymorphism. Given a population
of cases and controls, the allele frequency and r2 thresh-
olds can be specified to yield a given level of power to
detect a disease association with any common SNP in
the gene. We find that, at a relatively stringent r2 thresh-
old ( ), the selected tagSNPs resolve 180% of all2r 1 0.8
existing haplotypes. We have implemented the algorithm
in a program that will identify bins of tagSNPs at a user-
specified minimum-allele frequency and at minimum r2

between tagSNPs and unassayed SNPs. Users may also
specify mandatory tagSNPs, when prior hypotheses ex-
ist as to which SNPs might be functionally important
(e.g., nonsynonymous coding region SNPs [cSNPs] or
SNPs in known regulatory regions).

Material and Methods

tagSNP Selection

We developed a greedy algorithm to identify subsets of
tagSNPs for genotyping, selected from all SNPs exceeding
a specified MAF threshold. Starting with all SNPs above
the MAF threshold, the single site exceeding the r2 thresh-
old with the maximum number of other sites above the
MAF threshold is identified. This maximally informative
site and all associated sites are grouped as a bin of as-
sociated sites. Not all SNPs within the bin are inter-
changeable, because pairwise association is not an as-

sociative property: if r2 exceeds the threshold for SNP
pairs A/B and B/C, r2 for SNP pair A/C might not exceed
the threshold. Thus, because the bin is initially ascer-
tained using a single SNP, all pairwise r2 within bin are
re-evaluated, and any SNP exceeding threshold r2 with
all other sites in the bin is specified as a tagSNP for the
bin. Thus, one or more SNPs within a bin are specified
as “tagSNPs,” and only one tagSNP would need to be
genotyped per bin. The tagSNP can be selected for assay
on the basis of genomic context (coding vs. noncoding
or repeat vs. unique), ease of assay design, or other user-
specified criteria.

The binning process is iterated, analyzing all as-yet-
unbinned SNPs at each round, until all sites exceeding
the MAF threshold are binned. Each bin is reported as
a set of all SNPs in the bin as well as the subset of
tagSNPs within the bin, each of which is above the r2

threshold with all other SNPs in the bin. If an SNP does
not exceed the r2 threshold with any other SNP in the
region, it is placed in a singleton bin.

Samples

Forty-seven unrelated individuals were resequenced: 24
individuals from the Coriell African American 50 panel
(Coriell samples NA17101–NA17116 and NA17133–
NA17140) and 23 European subjects from the CEPH
families (NA06990, NA07019, NA07348, NA07349,
NA10830, NA10831, NA10842–NA10845, NA10848,
NA10850–NA10854, NA10857, NA10858, NA10860,
NA10861, NA12547, NA12548, and NA12560).

Sequencing

The SeattleSNPs Program for Genomic Applications
(PGA) resequences candidate genes involved in inflam-
matory processes in humans. For all genes analyzed, we
resequenced the genomic region spanning the longest ref-
erence transcript in LocusLink, including introns, as well
as an average of 2.5 kb 5′ of the gene and 1.5 kb 3′ of
the gene. Only autosomal genes with 185% complete
resequencing coverage of the genomic region were in-
cluded in these analyses. Overlapping PCRs were de-
signed for the reference sequence by use of the program
PCRoverlap (Rieder et al. 1999). Templates were am-
plified using the Elongase kit from Invitrogen on MJR
Tetrad thermal cyclers. Samples were sequenced using Big
Dye Terminator chemistry (Applied Biosystems) on ABI
3700 and ABI 3730 instruments. Detailed protocols for
PCR and sequencing are available at the University of
Washington–Fred Hutchinson Cancer Research Center
Web site.

Sequence data were assembled into contigs by use of
Phred (Ewing and Green 1998; Ewing et al. 1998), Phrap,
and Consed (Gordon et al. 1998). Polymorphic sites were
identified using PolyPhred, version 4.05 (Nickerson et al.
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1997). At insertion-deletion polymorphisms, the sequence
analysts manually genotyped each sample and designed
primers from the other strand to sequence beyond the
indel. All polymorphic sites flagged by PolyPhred were
reviewed to remove a few false positives associated with
biochemical artifacts, such as GC compressions, unin-
corporated dye terminators, and heterozygous insertion-
deletion polymorphisms.

Data quality was assessed in a number of ways. We
trimmed each chromatogram to remove low-quality se-
quence (Phred score !25), resulting in analyzed reads
averaging 1450 bp, with an average Phred quality of 40.
We obtained second-strand confirmation from a differ-
ent sequencing primer at 66% of all polymorphic sites
and third-strand confirmation at 33% of all polymor-
phic sites. We observed all three possible genotypes (het-
erozygotes and homozygotes for each allele) for 38% of
common polymorphic sites, with an average Phred qual-
ity 145 (1/50,000 probability of being incorrectly as-
signed). The average flanking-sequence quality associated
with polymorphic sites (�5 bp on each side of the poly-
morphic site) was 140. We independently verified 110 of
the identified common sites by Taqman allelic discrim-
ination, using an ABI 7900 (Livak 1999); 199% of Taq-
man genotypes were concordant with the sequence data.

Calculating r2

African American and European American populations
were analyzed independently. Within a given gene, two
SNP haplotype frequencies were estimated using stan-
dard methods for all pairs of SNPs (Hill 1974), and r2

was calculated from the inferred haplotype frequencies
(Hill and Robertson 1968).

To compare results from LD-based selection with those
from random SNP selection, in each gene, the number
of tagSNP bins was determined at each r2 threshold. An
equal number of SNPs then was selected at random from
the set of all SNPs 110% MAF, and r2 was measured
between the random set and all SNPs above the MAF
threshold. Random selection was repeated 100 times to
determine the average number of SNPs in each gene ex-
ceeding the r2 threshold with the randomly selected set
of SNPs.

To determine the relationship between LD-selected
tagSNPs and haplotypes, haplotypes were inferred inde-
pendently, using PHASE, version 1.0.1 (Stephens et al.
2001b), on all sites with 110% MAF in each population.
Then the number of haplotypes inferred using all sites
was compared with the number of haplotypes resolved
using only one tagSNP per bin. These data were com-
pared either as the actual number of haplotypes resolved
or as the effective number of haplotypes resolved (ne),
calculated in equation (1), where pi is the frequency of
the ith haplotype:

1
n p . (1)e 2�pi

i

For comparison with haplotype-based tagSNP selec-
tion methods, we first identified haplotype “blocks” as
regions with little evidence of historical recombination
between common SNPs, through use of a defined set of
rules (Gabriel et al. 2002). tagSNPs were selected, using
the program tagsnps.exe (Stram et al. 2003) to identify
a minimal set of tagSNPs that optimize the predictability
of common haplotypes by use of the statistic . We ran2rh

the program with the following parameters: common
haplotypes were defined as “the minimal set of haplotypes
that covers 80% of existing haplotypes,” and sets of
tagSNPs resolving the common haplotypes were selected
at an threshold of 0.7, because the number of selected2rh

tagSNPs at this threshold was comparable to the number
of tagSNPs selected using the LDSelect algorithm at an
r2 threshold of 0.5. When genes contained more than
one block, tagSNPs were selected independently within
each block.

htSNPs were also identified using the program Haplo-
BlockFinder. HaploBlockFinder requires inferred haplo-
types as input, so we used PHASE, version 2.0, and in-
ferred haplotypes for the complete gene within each popu-
lation. HaploBlockFinder was run with defined blocks by
haplotype diversity within each block (Patil et al. 2001),
and htSNPs were selected within each block for 80%
coverage (program parameters �A2 �C0.8 �T1 �P0.8).

Results

We tested the LD-select algorithm on a set of 100 can-
didate genes resequenced in 24 African Americans and
23 European Americans. These genes averaged 16.5 kb
in length, with the longest at 45 kb. In this set of genes,
8,877 SNPs were observed overall, with 7,793 in the
African American population and 4,620 in the European
American population, for an average SNP density of 1
every 200 bp. A small number of triallelic SNPs were
observed, but they were excluded from this analysis. The
observed nucleotide diversity (p) was in Af-�49.1 # 10
rican Americans, in European Americans, and�46.6 # 10

in the combined population, which are simi-�48.4 # 10
lar results to those of previous large-scale genomic sur-
veys (Wang et al. 1998; Cambien et al. 1999; Cargill et
al. 1999; Halushka et al. 1999; Sachidanandam et al.
2001; Stephens et al. 2001a). With common variation
defined as “an SNP with ,” 3,178 commonMAF 1 10%
SNPs were identified in the African American popula-
tion, and 2,375 common SNPs were identified in the
European American population. Thus, the average ob-
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served frequency of SNPs with an MAF 110% was every
500 bp in African Americans and every 700 bp in Eu-
ropean Americans, as predicted elsewhere (Kruglyak and
Nickerson 2001).

Coding sequences (CDS) accounted for slightly more
than 8% of the scanned sequence (135 kb), for an av-
erage of 1.35 kb of CDS per gene. Four hundred two
SNPs were observed within CDS, of which 277 were
nonsynonymous, changing amino acids. By compari-
son, UTRs accounted for slightly more than 5% of the
scanned sequence (77 kb), and 497 SNPs were observed
in UTRs; thus, SNP density in coding regions is clearly
lower than in other contexts. Of the nonsynonymous
cSNPs, 78 were common in African Americans, 63 were
common in European Americans, and only 44 were com-
mon in both populations. Thus, less than one common
nonsynonymous cSNP was observed per gene, so a di-
rect analysis of putatively functional common variation
would not be possible in many genes. However, as men-
tioned above, an average of 20–30 common variants
were identified in each gene (depending on population);
therefore, even in the absence of coding changes, a con-
siderable amount of common polymorphism exists
within each gene. Analysis of common, noncoding vari-
ants can test the alternative hypothesis that functional
SNPs reside in noncoding regions.

Variation discovery results for an average-sized candi-
date gene are shown in figure 1. We resequenced a total
of 15,152 bp across the b-2 bradykinin receptor
(BDKRB2) and identified 77 SNPs over all, with 28
SNPs with 110% MAF in either African Americans or
European Americans. Twenty-two SNPs with MAF 1

were observed in the European American popula-10%
tion (fig. 1A). When the samples are rearranged so that
SNPs with similar patterns of genotype are adjacent (fig.
1B), it is clear that many SNPs exhibit very similar pat-
terns of genotype. When we considered the 22 common
SNPs in European Americans, just 11 unique patterns of
genotype were observed, and some of those patterns were
extremely similar. Pairwise r2 between sites (fig. 1C)
shows groups of sites with similar patterns of genotype
as red triangles above the diagonal, indicating that r2 is
near 1.

Pairwise SNP Association Analysis

Because the theoretical variance of any single r2 mea-
surement is quite large (Ewens 1979), we modeled the
patterns of LD across candidate genes, using coalescent
simulated data (Hudson 2002) to determine the relation-
ship between observed r2 in a small SNP discovery popu-
lation and true r2 in the overall population. Modeled data
demonstrated that the true distribution of r2 in regions of
∼15 kb is skewed to extreme values (near 0 or near 1),
with a dramatic increase in variance for comparisons

involving SNPs with !10% MAF (data not shown).
Therefore, we limited the present analysis to sites with
110% MAF.

In simulated data, the frequency with which the ob-
served r2 in 24 individuals exceeded a given r2 threshold
when the true r2 in 10,000 individuals did not exceed that
threshold increases dramatically for r2 thresholds !0.5;
therefore, thresholds 10.5 appear to yield more reliable
results in this sample size (Carlson et al. 2003). Reliable
tagSNP identification at lower r2 thresholds or MAF
thresholds will require larger resequencing data sets.
Therefore, we suggest the use of r2 thresholds 10.5 until
larger resequencing data sets become available.

The set of tagSNP bins identified in BDKRB2 at thresh-
old and with in the European2r 1 0.5 MAF 1 10%
American sample is shown in figure 1B. Five bins of
tagSNPs were identified: one bin of nine SNPs, two bins
of four SNPs, one bin of three SNPs, and one bin of two
SNPs. The pattern of genotypes within each bin clearly
is very similar. The number of tagSNP bins selected for
each of the 100 genes at threshold and with2r 1 0.5

is shown in figure 2A and table 1. As ex-MAF 1 10%
pected, the minimal number of tagSNP bins tends to be
larger in the African American population, reflecting
both higher nucleotide diversity and weaker LD in that
population.

Also as expected, the number of tagSNP bins tends to
increase with gene size in both populations, although
considerable variance in site-set density was observed,
probably reflecting the recombinational history of each
gene, as well as the variance in the nucleotide diversity
of each gene. Genes with few recombinant chromosomes
would tend to require fewer tagSNPs than highly re-
combinant genes of similar size; for example, PON1 and
TRPV5 have similar size and nucleotide diversity in the
African American population, but PON1 requires 28
tagSNPs at an r2 threshold of 0.5, compared with 9 at
TRPV6. In this population, we identified seven haplo-
type blocks in PON1 compared with three in TRPV6,
which would be consistent with elevated rates of recom-
bination in PON1 and could explain the large number
of tagSNP bins required for this gene. Similarly, genes
with high nucleotide diversity tend to require more
tagSNPs than low-diversity genes (fig. 2B), although this
trend is more subtle.

We implemented LD-based tagSNP selection as a
greedy algorithm; to test the performance of this al-
gorithm, we compared against the results from an ex-
haustive search for the minimal set of tagSNPs for which
all common SNPs are either directly assayed or exceed
a specified r2 threshold. The computational burden of the
exhaustive algorithm was excessive for solutions with
more than seven tagSNPs, so we limited our testing to
genes with fewer than seven tagSNP bins identified by
the greedy algorithm. In the European sample, at an r2
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Figure 1 Common variation and LD in European Americans at BDKRB2. At the BDKRB2 gene, 22 SNPs with were describedMAF 1 10%
for the European American samples (A). Patterns of genotype at each SNP are shown as a visual genotype plot, in which each column represents
a site and each row represents a sample. Genotype is color coded, as shown, with SNPs presented in the order they were identified across the gene.
Patterns of genotype are clearly similar for many SNPs (e.g., sites 10922 and 12574) but not necessarily for adjacent SNPs. The same data are
shown in panel B, with the order of SNPs rearranged such that each SNP is adjacent to SNPs with similar patterns of genotype. Among the 22
SNPs, the LD-based SNP-selection algorithm identified five bins of tagSNPs at an r2 threshold of 0.5. tagSNP bins are boxed (B). The LD statistic
r2 describes the similarity of pattern between pairs of polymorphic sites: pairwise r2 between SNPs is shown for the same order of SNPs as in panel
B, and bins of SNPs with similar patterns are visible as reddish triangles above the diagonal (C).

threshold of 0.5, 78 genes were identified with less than
seven tagSNP bins. In all 78 genes, the minimal number
of tagSNPs identified using the exhaustive search was the
same as the number of tagSNP bins identified using the
greedy algorithm. Thus, although the greedy algorithm is
not guaranteed to minimize the number of tagSNP bins,
in this data set, the greedy algorithm appears to yield

results that are comparable to the results of an exhaustive
algorithm, at considerable computational savings.

The total number of tagSNP bins identified in the 100-
gene set is shown for a range of r2 thresholds in figure 3.
As expected, the number of tagSNP bins increases as the
stringency of the r2 threshold increases; the increase in
the number of tagSNP bins was observed to be roughly



Figure 2 tagSNPs per gene, with threshold and . The complete genomic region of 100 genes was resequenced in 242r 1 0.5 MAF 1 10%
unrelated African American and 23 unrelated European American samples. Within each population, tagSNPs were selected from all SNPs with

at an r2 threshold of 0.5. A, The number of tagSNPs selected in each gene under these parameters, plotted against the size of theMAF 1 10%
genomic region for each gene. Although there is a clear trend toward more tagSNPs in larger genes, there is considerable variance in the required
tagSNP density in both populations. B, The number of tagSNPs selected in each gene, plotted against nucleotide diversity (p) per base pair. Thus,
variance in tagSNP density between genes reflects both variation in nucleotide diversity and variation in the average extent of LD within genes.
Within each gene, a greater number of tagSNPs is generally required in the African American population, reflecting both greater nucleotide diversity
and shorter range LD, relative to the European American population.
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Table 1

Comparison of SNPs at Different Frequencies and Thresholds in Two Populations

AFRICAN AMERICANS EUROPEAN AMERICANS

Nucleotide
Diversity

( )�4p # 10

No. of

Nucleotide
Diversity

( )�4p # 10

No. of

SNPs
Common

SNPs

tagSNPs at

SNPs
Common

SNPs

tagSNPs at

GENE

GENBANK

ACCESSION

NUMBERa

NO. OF

BASE PAIRS

SCANNED 2r 1 0.5 2r 1 0.8 2r 1 0.5 2r 1 0.8

ACE AY436326 22,122 9.22 83 44 11 21 6.31 43 27 2 5
AGT AY436323 15,593 12.97 91 43 6 16 13.51 84 52 6 10
AGTR1 AY436325 45,926 11.67 253 95 29 42 7.14 128 74 10 18
APOB AY324608 44,547 5.31 159 43 12 20 3.77 79 32 7 11
BDKRB2 AF378542 14,050 6.68 61 19 8 12 7.00 49 22 5 9
BF AF551848 9,956 5.92 30 11 6 6 5.30 26 6 3 4
CCR2 AF545480 10,073 6.75 41 12 5 8 5.85 22 19 6 7
CD36 AY095373 29,921 9.79 167 49 12 25 7.16 80 35 5 8
CEBPB AY193834 4,508 7.22 13 6 3 3 4.70 10 3 1 2
CRF AF410771 9,293 7.99 38 16 11 15 7.21 24 14 4 6
CRP AF449713 6,715 10.51 30 14 4 7 5.05 13 5 3 3
CSF2 AF373868 5,992 11.24 30 9 4 7 6.68 17 9 2 3
CSF3 AF388025 5,527 8.91 28 4 1 2 8.62 17 8 2 2
CSF3R AY148100 18,843 9.60 99 29 9 13 6.17 52 23 3 10
DCN AF491944 34,947 8.06 141 38 9 14 1.20 40 8 5 5
F10 AF503510 28,937 6.42 98 33 20 27 5.01 63 28 13 18
F11 AY191837 26,603 8.87 120 51 11 22 6.65 63 41 6 10
F12 AF538691 10,616 6.12 44 10 7 8 4.17 22 10 4 6
F2 AF478696 20,407 5.93 90 15 5 10 4.78 57 8 2 5
F2R AF391809 24,231 6.96 94 34 10 13 5.36 52 28 6 12
F2RL1 AF400075 17,715 7.36 98 19 4 7 6.41 43 24 5 8
F2RL2 AF374726 9,273 13.42 61 24 8 12 11.82 37 22 6 7
F2RL3 AF384819 10,214 7.27 42 19 6 12 6.60 25 16 3 6
F3 AF540377 16,114 6.57 61 19 9 12 5.41 26 19 4 6
FGA AF361104 9,947 3.99 23 6 3 5 3.18 17 5 3 3
FGB AF388026 11,604 4.56 45 7 4 4 7.93 36 24 3 3
FGG AF350254 10,168 3.49 21 7 4 4 2.28 12 6 3 3
FGL2 AF468959 6,382 4.14 19 5 4 4 2.78 6 2 2 2
FSBP AF487652 9,846 5.96 31 11 3 5 5.01 26 12 4 5
GP1BA AF395009 6,241 8.23 27 9 6 6 7.67 21 8 3 4
HMGCR AY321356 27,810 3.61 69 17 4 7 4.08 49 20 2 4
ICAM1 AY225514 17,731 6.08 61 19 10 13 5.28 39 19 7 10
IFNG AF375790 7,665 4.87 28 5 5 5 4.62 13 7 2 4
IL10 AF418271 7,879 9.32 26 13 2 3 9.66 24 17 4 4
IL10RA AY195619 19,942 7.00 69 31 7 14 5.17 49 16 2 7
IL11 AY207429 8,964 9.85 40 17 11 14 7.30 24 15 4 6
IL12A AF404773 11,330 9.65 52 21 6 9 7.88 29 23 4 4
IL12B AF512686 14,902 7.86 52 19 5 6 5.95 33 23 6 6
IL13 AF377331 6,919 8.62 27 12 7 12 4.46 16 6 2 3
IL17B AF386077 9,077 4.85 32 7 2 4 7.28 22 15 3 3
IL19 AF390905 10,998 7.14 43 13 4 5 4.18 24 8 1 2
IL1A AF536338 17,849 9.57 78 38 4 7 10.99 50 44 3 4
IL1B AY137079 17,447 5.54 51 21 8 15 4.45 35 17 3 7
IL1R1 AF531102 27,864 7.91 134 38 15 24 7.21 85 40 7 15
IL1R2 AY124010 23,160 16.00 188 85 12 23 10.20 101 80 5 7
IL1RN AY196903 19,677 11.59 146 37 11 16 13.19 91 69 5 11
IL2 AF359939 6,752 3.79 20 3 2 2 3.57 10 5 3 4
IL20 AF402002 6,634 6.91 25 7 6 6 4.73 17 5 2 4
IL21R AY064474 25,844 8.52 116 35 15 21 7.34 76 36 8 17
IL22 AF387519 8,393 10.04 46 12 5 10 9.62 28 18 4 5
IL24 AY062931 10,628 7.56 41 16 5 6 6.50 24 14 3 3
IL2RB AF517934 26,029 13.31 148 66 28 42 10.65 100 59 15 18

(continued)
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Table 1 (Continued)

AFRICAN AMERICANS EUROPEAN AMERICANS

Nucleotide
Diversity

( )�4p # 10

No. of

Nucleotide
Diversity

( )�4p # 10

No. of

SNPs
Common

SNPs

tagSNPs at

SNPs
Common

SNPs

tagSNPs at

GENE

GENBANK

ACCESSION

NUMBERa

NO. OF

BASE PAIRS

SCANNED 2r 1 0.5 2r 1 0.8 2r 1 0.5 2r 1 0.8

IL3 AF365976 6,387 5.47 27 6 5 5 3.07 9 4 2 3
IL4 AF395008 22,845 9.53 105 45 14 29 4.80 56 25 5 6
IL4R AF421855 25,917 16.21 179 78 20 38 11.69 118 58 8 18
IL5 AF353265 5,186 5.14 16 4 2 3 0.92 3 1 1 1
IL6 AF372214 7,526 8.80 41 10 4 6 9.14 26 12 3 6
IL8 AF385628 7,035 6.89 35 9 5 5 4.66 9 7 1 1
IL9 AF361105 6,676 6.40 28 8 3 6 3.64 14 7 2 2
IRAK4 AY186092 33,033 7.87 153 34 5 14 3.15 72 5 2 4
JAK3 AF513860 19,067 12.46 113 48 21 27 7.62 56 31 9 14
KEL AY228336 25,850 9.38 128 50 12 22 1.47 47 2 1 2
KLK1 AY094609 9,922 12.93 63 24 7 14 13.00 46 27 5 6
KLKB1 AY190920 31,670 12.53 165 74 13 27 12.95 128 88 8 14
LDL AY324609 42,873 7.87 178 60 27 38 7.29 109 65 7 17
LTA AY070490 5,033 9.54 20 10 6 6 11.48 19 14 5 8
LTB AY070219 4,412 3.84 16 2 1 1 2.07 7 2 1 1
MC1R AF514787 6,545 12.06 36 14 6 8 9.55 22 11 2 4
MMP3 AF405705 11,904 8.85 50 17 5 9 7.56 35 16 3 4
NOS3 AF519768 23,307 7.95 102 33 16 21 6.41 54 34 11 13
PLAU AF377330 9,274 8.87 30 17 4 6 7.52 23 13 1 3
PLAUR AY194849 23,187 12.47 166 44 21 29 7.99 94 18 8 11
PON1 AF539592 29,052 14.02 175 89 28 44 8.80 121 55 11 25
PON2 AY210982 32,487 9.13 137 60 10 20 8.94 101 72 7 13
PROC AF378903 12,877 9.09 52 25 5 12 10.18 39 28 3 7
PROCR AF375468 6,968 5.37 15 9 3 3 6.10 14 8 2 2
PROZ AF440358 14,366 8.63 86 24 11 15 8.04 46 27 2 3
REN AY436324 13,640 11.52 78 28 15 24 6.67 46 16 3 7
SCYA2 AF519531 9,070 7.66 38 15 9 10 6.79 25 14 6 8
SELE AF540378 13,892 11.20 86 25 6 9 9.83 70 20 5 9
SELP AF542391 43,454 10.50 254 72 14 34 8.20 141 64 11 18
SERPINA5 AF361796 7,806 18.68 61 29 8 11 17.84 41 25 7 4
SERPINC1 AF386078 15,208 6.19 43 18 6 12 3.21 27 13 1 10
SERPINE1 AF386492 13,208 11.13 85 25 7 11 9.68 48 27 6 8
SFTPA1 AY198391 23,126 15.28 170 71 10 21 9.68 153 29 7 10
SFTPA2 AY206682 18,039 16.95 152 60 22 30 8.34 111 23 6 12
SFTPB AF400074 11,094 9.42 49 21 7 9 4.55 18 11 6 7
SFTPD AY216721 23,538 12.17 151 42 12 20 13.68 134 51 4 10
SMP1 AF458851 25,269 6.93 90 37 6 9 3.40 39 12 2 2
STAT6 AF417842 18,769 4.30 53 13 6 10 2.89 22 12 4 6
TGFB3 AY208161 23,236 7.24 81 32 10 21 4.82 50 24 3 4
THBD AF495471 7,254 4.10 24 6 4 4 2.79 14 4 3 3
TNFAIP1 AY065346 14,331 4.79 53 10 5 5 2.39 19 6 3 3
TNF AY066019 4,830 4.71 21 2 1 1 3.72 12 2 1 2
TNFRSF1A AY131997 16,207 7.44 60 26 13 17 4.80 26 14 2 4
TRPV5 AY206695 29,555 12.41 180 69 8 18 2.15 66 9 1 1
TRPV6 AY225461 27,629 14.24 142 74 9 18 1.16 63 1 1 1
VCAM1 AF536818 22,868 6.55 102 24 13 14 3.93 39 21 8 11
VEGF AF437895 15,442 8.95 64 26 11 20 9.21 49 25 8 10
VTN AF382388 5,559 10.59 28 11 3 4 5.29 15 4 1 2

a Polymorphisms identified in these GenBank records by the SeattleSNPs PGA or the Pharmacogenetics and Risk of Cardiovascular
Disease project were included in the analysis.
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Figure 3 Total tagSNP bins in 100 genes, versus threshold r2. At
each r2 threshold, tagSNP bins were identified for 100 genes within
African American (“AA tagSNPs”) and European American (“EA
tagSNPs”) populations. As expected, more tagSNP bins were identified
in African American samples than in European American samples. To
measure the effects of population stratification on the LD-select al-
gorithm, tagSNPs were also selected from merged African American
and European American populations (“Merged tagSNPs”). The min-
imal set of tagSNPs relevant to both populations was also assembled
at each r2 threshold as the union of the tagSNP sets selected in each
subpopulation (“Optimal tagSNPs”); this set was larger than the
tagSNP set in either subpopulation alone but considerably smaller than
the sum of the population-specific site sets, reflecting the fact that many
(but not all) tagSNPs were useful in both populations.

linear with increasing r2 thresholds. In the African Ameri-
can population, 867 tagSNP bins were identified at

, or an average of 9 tagSNP bins per gene, and2r 1 0.5
1,366 tagSNP bins were identified at , or an av-2r 1 0.8
erage of almost 14 tagSNPs per gene. Similarly, in the
European American population, 435 tagSNP bins were
identified at , and 689 tagSNP bins were iden-2r 1 0.5
tified at , for an average of 4 and 7 tagSNP bins2r 1 0.8
per gene, respectively. Some genes were observed with
dramatically different numbers of tagSNPs between popu-
lations (e.g., TGFB3 with 10 tagSNPs in African Ameri-
cans and 3 tagSNPs in Europeans, at an r2 threshold of
0.5). Some but not all of these differences reflected dra-
matic differences in nucleotide diversity (e.g., KEL,
TRPV5, and TRPV6).

To determine whether tagSNPs are population specific,
we tested tagSNPs identified in each ethnic population

(European American or African American) against all
common variants in the other population. At an r2

threshold of 0.5, 867 tagSNPs were identified in African
Americans, and 1,911 of 2,375 (80%) common SNPs
in Europeans were either directly assayed or exceeded

with the African American tagSNP set. Thus,2r p 0.5
at this r2 threshold, the tagSNPs identified in the African
American sample perform well in the European Ameri-
can samples, although at a cost of assaying roughly twice
as many tagSNPs as the tagSNP set derived directly from
European Americans (435 tagSNPs). Conversely, at an
r2 threshold of 0.5, the 435 European American tagSNPs
either directly assayed or exceeded , with only2r p 0.5
1,028 of 3,178 (32%) common SNPs in African Ameri-
cans, indicating that the tagSNP set assembled in Euro-
pean Americans is clearly inadequate for use in the African
American population.

LD is sensitive to population stratification. When sub-
populations have significantly different allele frequencies,
LD between a pair of SNPs in the combined population
can be stronger than in either subpopulation, and this will
cause the LD-selection algorithm to bin sites inappro-
priately. To examine the effects of population stratifica-
tion on LD selection, we selected tagSNPs from merged
African American and European American populations
at an r2 threshold of 0.5. When we tested the merged
tagSNP set against each subpopulation separately, in Eu-
ropean Americans, 5% of common SNPs did not exceed

with any selected tagSNP and, in African Ameri-2r p 0.5
cans, 15% of common SNPs did not exceed 2r p 0.5
with any selected tagSNP. Thus, within each subpopu-
lation, a significant fraction of unassayed sites were be-
low the r2 threshold with the merged tagSNP set, which
demonstrates the hazards of tagSNP selection in a strati-
fied population. The effects of admixture within individ-
uals are considerably more difficult to assess and have
been left for future analysis.

Haplotype and LD Selection

Under certain circumstances, haplotypes may be a use-
ful way to reduce the complexity of candidate-gene as-
sociation analyses. Discrimination between common hap-
lotypes is more useful than discrimination between rare
haplotypes; a convenient statistic to describe the number
of common haplotypes is the effective number of haplo-
types (the reciprocal of the haplotype homozygosity) an-
alogous to the effective number of alleles at a single poly-
morphic site (Wright 1931). We inferred haplotypes in
each population by use of PHASE (Stephens et al. 2001b),
and we investigated the relationship between the LD-se-
lected minimal set of tagSNPs and haplotype by com-
paring the actual (fig. 4A) and effective (figure 4B) number
of haplotypes resolved with the minimal tagSNP set, as
compared with haplotypes inferred using all common
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Figure 4 The relationship between LD-selected tagSNPs and hap-
lotypes. For each gene, haplotypes were inferred computationally. Re-
sults are shown as the fraction of haplotypes resolved using only LD-
selected tagSNPs, relative to haplotypes resolved using all common
SNPs. Results are shown across a range of r2 values in each population
(A). The effective number of haplotypes weights the number of hap-
lotypes by frequency, with common haplotypes more heavily weighted.
For each gene, the fraction of effective haplotypes resolved using only
LD-selected tagSNPs, relative to effective haplotypes resolved, by use
of all common SNPs is shown across a range of r2 values in each
population (B). For r2 thresholds 10.5, 180% of effective haplotypes
were resolved, demonstrating how, at adequately stringent r2 thresholds,
LD-selected tagSNPs efficiently resolve common haplotypes.

SNPs. In the data from European Americans, at an r2

threshold of 0.5, the LD-selected tagSNP set resolved58%
of actual haplotypes and 74% of effective haplotypes. The
greater fraction of effective than actual haplotypes re-
solved demonstrates how the LD-based algorithm resolves
common haplotypes more effectively than rare haplo-
types. At the same r2 threshold, 70% of actual and 75%
of effective haplotypes were resolved in African Ameri-
cans. At an r2 threshold of 0.8, 76% of actual and 85%
of effective haplotypes were resolved in European Ameri-
cans, and 84% of actual and 88% of effective haplotypes
were resolved in African Americans, demonstrating the
utility of LD-selected tagSNPs in haplotype resolution.

Comparison with Other tagSNP-Selection Methods

At present, knowledge of common genetic variation
is incomplete for the majority of genes (Carlson et al.
2003); therefore, marker selection for association analy-
sis in such genes is effectively random. To compare the
efficiency of SNPs selected at random with tagSNPs iden-
tified using LD select, sets of common SNPs that were
equal in number to the LD-selected tagSNPs at each r2

threshold were selected at random, with a minimum of
one randomly selected SNP per gene. For example, at

, there were 867 LD-selected tagSNP bins for2r 1 0.5
African American data, so 867 common SNPs were se-
lected for each random SNP set. For 250 random sam-
ples of 867 common SNPs from the African American
data, an average of 2,326 of 3,224 (72%) common SNPs
exceeded . Similarly, there were 435 tagSNP bins2r p 0.5
at for European Americans, and, in 250 random2r 1 0.5
samples of 435 common SNPs from the European popu-
lation, on average, 1,802 of 2,388 (76%) common SNPs
exceeded with the randomly selected set of2r p 0.5
SNPs. Across the entire range of r2 values analyzed, 70%–
80% of all existing common SNPs were above the r2

threshold with randomly selected sets of SNPs (table 2).
An alternative method for selecting a subset of SNPs

to genotype is haplotype based: haplotype-tagging SNPs
(htSNPs) are selected to optimize resolution of existing
haplotypes. This type of SNP selection is generally ap-
plied to small segments of the genome with limited hap-
lotype diversity, sometimes referred to as “haplotype
blocks.” We adapted the haplotype block definition from
Gabriel et al. (2002) to identify haplotype blocks in our
data set. Haplotype blocks could not be assigned in two
genes in African Americans (FGB and LTB) and four
genes in European Americans (IL5, LTB, TRPV6, and
TNF), because the genes contained zero or only one SNP
with 120% MAF. In addition, haplotype blocks were not
identified in nine genes in African Americans (BDKRB2,
FGL2, IFNG, IL11, IL13, IL3, STAT6, THMDN, and
TNF) and six genes in European Americans (FGL2, FGG,
IL2, IL9, KELL, and THMDN), even though adequate
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Table 2

Comparison of tagSNPs and Random SNPs at Various r2 Thresholds in Two Populations

r2 THRESHOLD

AFRICAN AMERICANSa EUROPEAN AMERICANSb

No. of
tagSNPs Bins

Random SNP
Ascertained

No. of
tagSNPs Bins

Random SNP
Ascertained

.1 268 2,500 165 1,973

.2 456 2,451 247 1,906

.3 598 2,397 323 1,866

.4 720 2,337 380 1,822

.5 867 2,326 435 1,803

.6 1,028 2,297 504 1,783

.7 1,186 2,278 588 1,777

.8 1,366 2,313 689 1,774

.9 1,606 2,319 832 1,758

a In the African American population, 3,178 tagSNPs were identified.
b In the European American population, 2,375 tagSNPs were identified.

numbers of high-frequency SNPs were present to define
a block, generally reflecting small gene size as well as
low levels of LD between SNPs with 120% MAF. Con-
sidering only the 89 genes for which one or more hap-
lotype blocks could be identified in the African American
sample, 216 haplotype blocks were identified: 2,080 com-
mon SNPs fell within blocks, 878 common SNPs were
between blocks, and 159 SNPs were between a block and
the end of the resequenced region. In consideration of
only the 90 genes for which one or more haplotype blocks
could be identified in European Americans, 149 blocks
were identified, with 1,834 SNPs within blocks, 355 be-
tween, and 160 ambiguous.

We compared two htSNP selection algorithms against
LDSelect. First, 800 htSNPs were selected, through use
of an htSNP-selection algorithm (Stram et al. 2003), in
the 89 genes with at least one haplotype block in the
African American population, at an threshold of 0.7.2rh

This is quite similar to the number of tagSNPs identified
in these genes and in this population with LD selection
at an r2 threshold of 0.5 (806 tagSNPs), so we deter-
mined how many common SNPs showed with2r 1 0.5
the htSNPs: 2,640 of 3,117 (85%). Similarly, in the Eu-
ropean American population, 417 htSNPs were selected
using the haplotype-based algorithm, again comparable
to the 431 tagSNPs selected by the LD-based algorithm
at the r2 threshold 0.5. For the haplotype-selected set of
htSNPs in European Americans, 2,041 of 2,381 (86%)
common SNPs showed .2r 1 0.5

We also tested the HaploBlockFinder program (Zhang
and Jin 2003) for identification of htSNPs, which auto-
matically defines blocks within a set of inferred haplo-
types. By use of a chromosomal-coverage block definition,
535 blocks were identified in Africans, and 223 blocks
were identified in Europeans Americans. The large num-
ber of blocks observed, relative to the Gabriel et al. (2002)
definition, was at least partially attributable to the fact

that HaploBlockFinder allows blocks consisting of a sin-
gle SNP: 196 blocks containing a single SNP were iden-
tified in African Americans and 60 in European Ameri-
cans. For the African American population, 1,250 htSNPs
were selected, and 469 htSNPs were selected for the Eu-
ropean American population. Again, we determined how
many common SNPs showed with the selected2r 1 0.5
htSNPs: 2,790 of 3,117 (89%) in African Americans and
1,839 of 2,381 (77%) in European Americans. Thus, al-
though htSNPs are superior to randomly selected SNPs,
LD-selected tagSNPs more comprehensively describe
common patterns of variation for a given number of
assayed SNPs than either alternative.

Discussion

Several strategies exist for candidate-gene association
studies. It is not unreasonable to test for association
between candidate SNPs with predicted function (e.g.,
nonsynonymous cSNPs) and phenotype, but this type of
polymorphism is relatively rare, whereas 20–30 com-
mon polymorphisms exist per gene in our data set, and
it is not yet possible to predict whether most noncoding
polymorphisms might have functional consequences. A
major drawback of testing candidate SNPs directly is that
a lack of association with a candidate SNP does not rule
out functionally important changes at nearby SNPs, ex-
cept those that are in tight LD with the candidate SNP.
An alternative strategy is to test a set of densely spaced
SNPs for disease association and to rely on LD between
the genotyped SNPs and unassayed SNPs to detect func-
tional variants that cannot be predicted a priori. To de-
sign such a study, it is necessary to define common vari-
ants in a region, as well as the patterns of LD between
these variants. It is currently feasible to resequence the
complete genomic region of an average-sized gene in
a modestly sized polymorphism-discovery population,
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Figure 5 tagSNP bins and the evolutionary relationships between
haplotypes. A hypothetical nonrecombinant region with five existing
haplotypes is shown, with each row (A–E) representing a haplotype
and each column (1–7) representing an SNP with a unique pattern of
alleles. The common allele is shown as blue and the rare allele as
yellow. There are five possible patterns (1–5) that are haplotype spe-
cific, and two (6 and 7) that are specific to clades of related haplotypes.
LD-based tagSNP selection at an adequately stringent r2 threshold would
identify all seven patterns in this hypothetical region. Thus, directly
testing LD-selected tagSNPs can identify disease associations with ei-
ther specific haplotypes or with clades of related haplotypes.

thereby defining patterns of LD. Rational selection of
a subset of sites that provides maximum information
about common variation in the region is then possible
on the basis of the observed patterns of LD between
common SNPs.

We have developed a simple greedy algorithm to
efficiently identify optimized subsets of SNPs for assay
using observed patterns of LD. tagSNPs are selected for
assay, such that all common SNPs either are directly
assayed or exceed a threshold level of LD (r2) with an
assayed SNP. Thus, to assay all SNPs in the gene at a
given r2 threshold, it is necessary to genotype only the
minimal set of tagSNPs. We applied this algorithm at
a range of stringencies to define the minimal set of
tagSNPs for the set of 100 candidate genes in two ethnic
populations.

At the relatively lenient threshold of , the av-2r 1 0.5
erage map density was 5.2 tagSNPs per 10 kb in African
Americans and 2.6 tagSNPs per 10 kb in European
Americans; at a more stringent threshold ), map2(r 1 0.8
densities were 8.25 tagSNPs per 10 kb and 4.2 tagSNPs
per 10 kb, respectively. Extrapolating to 35,000 genes
with an average of 27 kb, ∼250,000 tagSNPs would be
required to cover all genic regions in European Ameri-
cans at an r2 threshold of 0.5, or 400,000 at an r2 thresh-
old of 0.8. Similarly, ∼500,000 tagSNPs would be re-
quired to cover all genic regions in African Americans
at an r2 threshold of 0.5, or 800,000 at an r2 threshold
of 0.8.

It is important to keep in mind that these map den-
sities reflect the most informative possible set of tagSNPs,
whereas random SNP–selection strategies would require
denser maps to achieve similar power. In a comparison
with an equal number of randomly selected SNPs, ∼75%
of common SNPs were above the r2 threshold of the
random set.

It has been observed that many short segments of the
genome (!20 kb) appear to have experienced little or
no recombination and that there are a small number of
haplotypes within these segments. These segments have
been termed “haplotype blocks,” and significant efforts
are under way to map the extent of such blocks and to
identify SNPs that describe variation within them (Patil
et al. 2001; Gabriel et al. 2002). However, fully describ-
ing existing patterns of variation requires knowledge of
the evolutionary relationships between the haplotypes,
even in nonrecombinant regions. Some SNPs will be
specifically associated with a single haplotype, whereas
other SNPs will be associated with clades of related
haplotypes.

At an adequately stringent r2 threshold ( ), LD-2r 1 0.8
selected tagSNPs describe both haplotype-specific and
clade-specific patterns of variation, because the LD-se-
lection algorithm reduces the set of all sites to bins of
sites with similar patterns of genotype. For example,

given five haplotypes in a hypothetical nonrecombinant
region, there are seven possible patterns of variation,
some haplotype specific and others restricted to groups
of related haplotypes (fig. 5). Because the tagSNP bins
describe unique patterns of SNPs without reference to
haplotype, at an adequately stringent r2 threshold, there
would be seven bins of tagSNPs in this region. Thus,
association analyses that make use of the LD-selected
minimal site set can detect either haplotype-specific or
clade-specific effects within each nonrecombinant region,
without prior inference of haplotypes.

Given the fact that blocks with limited haplotype di-
versity exist, it is important to understand the patterns
of recombination at the boundaries of these blocks. A
small number of recombination hotspots have been con-
firmed (Chakravarti et al. 1984; Jeffreys et al. 2001), and
some analyses have suggested the presence of recombina-
tion hotspots between blocks, but simulations with uni-
form recombination rates have also been shown to gen-
erate “blocks” (Subrahmanyan et al. 2001). It is likely
that, in some instances, the observed boundaries of
nonrecombinant regions reflect recurrent recombina-
tion events at a single hotspot but that others reflect a
single recombinant chromosome that has drifted to high
frequency in the population.

Under a hotspot model, LD should be low for all site
pairs spanning the recombination hotspot, whereas, un-
der a drift model, LD would be reduced only for sites
where the alleles differed on the two ancestral haplotypes
involved in the recombination event, and LD would re-
main strong across the hotspot for all other sites. Thus,
where block boundaries reflect a small number of recom-
bination events, genotypes will not be independent be-
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tween adjacent blocks, and the optimal set of sites for a
region that spans multiple blocks can be smaller than the
sum of the optimal sets of sites when each block is con-
sidered independently. The LD-selection algorithm does
not require prior specification of haplotype block bound-
aries, and it will find an optimal set of tagSNPs for a
given region, regardless of recombination history.

To compare the LD-selected tagSNPs with htSNPs
selected on the basis of haplotype blocks, we determined
the block structure of the genes in our data set using the
haplotype block definition of Gabriel et al. (2002). The
large number of common SNPs that did not fall within
blocks has important ramifications for SNP-selection
algorithms that assume block structure, given that only
SNPs within blocks are considered for selection as
htSNPs. We selected htSNPs using two programs—
tagsnps.exe (Stram et al. 2003) and HaploBlock-
Finder—and we found that the htSNPs selected with
either algorithm did modestly better than random SNPs
in describing patterns of common variation, as mea-
sured by the fraction of all common variants above the
LD threshold for a given set of SNPs. However, LD-
selected tagSNPs are more powerful than an equivalent
number of either haplotype-selected htSNPs or randomly
selected SNPs for detecting the simplest possible scenario,
in which disease risk is directly associated with a single
allele at a single SNP.

The LD-selection algorithm assumes that LD between
SNPs reflects the evolutionary relationship between those
sites within a population, reflecting demographic events
such as population expansion and contraction, selective
pressure, and recombination. Therefore, the LD-selection
algorithm is sensitive to population stratification, which
can generate artifactual LD between otherwise unrelated
sites. As a consequence, tagSNPs should be selected in
unstratified populations, when possible. The advantages
of tagSNP selection within ethnic populations are two-
fold: in lower-diversity populations, the set of tag-
SNPs selected within the population will be consid-
erably smaller than in the combined population; in
higher diversity populations, unassayed SNPs will better
correlate with the minimal set of tagSNPs selected within
the population than will tagSNPs from the combined
population. After tagSNP bins are identified in each sub-
population, the minimal site set relevant to multiple pop-
ulations can easily be assembled.

In conclusion, resequencing a modest number of sam-
ples can define all common SNPs in a candidate gene,
as well as the patterns of LD between these SNPs. We
have described an efficient greedy algorithm to identify
an optimal set of tagSNPs that describe these patterns.
Because the LD between unassayed SNPs and tagSNPs
is defined, testing the tagSNPs for main effects on dis-
ease status or severity provides reasonable power to de-
tect risk directly associated with any allele or genotype

at any common SNP in the candidate gene. At an ad-
equately stringent r2 threshold ( ), the tagSNPs2r 1 0.5
also efficiently resolve haplotype and could be used to
test for haplotype-related risks. The LD-based tagSNP-
selection algorithm is robust for recombination history
within the gene and does not require accurate prediction
of functional SNPs within candidate genes. Software im-
plementing the LD-selection algorithm is implemented in
the SeattleSNPs vg2 program. A stand-alone version is
also available from the authors on request. The distrib-
uted version allows users to specify allele-frequency
thresholds, r2 thresholds, and mandatory markers to
include or exclude as tagSNPs.
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