
Discovering Coherent Value Bicliques In Genetic
Interaction Data

Gowtham Atluri
Dept of Comp Sc and Engg

Univ of Minnesota, Twin Cities
Minneapolis, MN USA

gowtham@cs.umn.edu

Jeremy Bellay
Dept of Comp Sc and Engg

Univ of Minnesota, Twin Cities
Minneapolis, MN USA

bellay@cs.umn.edu

Gaurav Pandey
Dept of Comp Sc and Engg

Univ of Minnesota, Twin Cities
Minneapolis, MN USA

gaurav@cs.umn.edu

Chad Myers
Dept of Comp Sc and Engg

Univ of Minnesota, Twin Cities
Minneapolis, MN USA

cmyers@cs.umn.edu

Vipin Kumar
Dept of Comp Sc and Engg

Univ of Minnesota, Twin Cities
Minneapolis, MN USA

kumar@cs.umn.edu

ABSTRACT
Genetic Interaction (GI) data provides a means for exploring
the structure and function of pathways in a cell. Coherent
value bicliques (submatrices) in GI data represents func-
tionally similar gene modules or protein complexes. How-
ever, no systematic approach has been proposed for exhaus-
tively enumerating all coherent value submatrices in such
data sets, which is the problem addressed in this paper. Us-
ing a monotonic range measure to capture the coherence
of values in a submatrix of an input data matrix, we pro-
pose a two-step Apriori-based algorithm for discovering all
nearly constant value submatrices, referred to as Range Con-
strained Blocks. By systematic evaluation on an extensive
genetic interaction data set, we show that the coherent value
submatrices represent groups of genes that are functionally
related than the submatrices with diverse values. We also
show that our approach can exhaustively find all the sub-
matrices with a range less than a given threshold, while the
other competing approaches can not find all such submatri-
ces.

1. INTRODUCTION
Genetic Interaction (GI) data provides a means for ex-

ploring the structure and function of pathways in a cell [18].
The development of technologies like Synthetic Genetic Ar-
ray (SGA) and Epistatic MiniArray (E-MAP), have enabled
large-scale measurement of quantitative interactions in S.
Cerevisiae [20]. These technologies measure the interaction
between two genes in terms of the fitness of a cell when a
pair of genes are knocked out relative to the expected fit-
ness when there is no interaction between the pair of genes.
Specifically, two genes A and B are said to interact geneti-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

cally if the fitness of a large set of yeast cells (colony) after
the deletion of both genes (say FAB) differs from the ex-
pected fitness if the effects of A and B were independent,
i.e., the product of the fitnesses after the deletion of A (say
FA) and B (say FB) individually [20]. Thus two genes in-
teract if ǫ 6= 0 in the following equation.

ǫ = FAB − FAFB (1)

The magnitude of this score, i.e., |ǫ| represents the strength
of the genetic interaction between A and B. In addition, if
ǫ > 0, the interaction is called a “positive” or “alleviating”
interaction, and ǫ < 0 denotes a “negative” or “aggravating”
interaction. A GI interaction data set can be represented as
an adjacency matrix G, where the value of each element Gij

is the interaction score between the query gene gi (row) and
the array gene gj (column), calculated using Equation 1.

Previous studies on analyzing genetic interaction networks
has noted striking structure present in these networks. For
example, [13, 21] have noted the presence of nearly com-
plete bipartite subgraphs involving similar type of interac-
tions. The two sets of genes in each of the bipartite sub-
graphs typically represent pairs of functionally complemen-
tary pathways or protein complexes. Previous efforts to dis-
cover these bipartite subgraphs in GI data are limited to
finding bipartite subgraphs with interactions having same
sign [13, 21] i.e., they look for bicliques such that all inter-
actions are positive (or all interactions are negative) without
being concerned about the variation in the magnitude of the
interactions. It has been observed that bicliques with coher-
ent (i.e., similar values) positive interaction scores represent
protein complexes or modules of genes involved in similar
biological functions [3, 18]. In this paper we address the
problem of discovering such bicliques i.e. submatrices with
coherent values in a GI data matrix.

This problem of discovering a submatrix with coherent
values is very similar in nature to the biclustering problem
([15]) that is addressed in the domain of micorarray data
analysis. In biclustering, the goal is to find a subset of the
gene (rows) constituting a gene expression data set that have
coherent values across a subset of the conditions (columns).
Several algorithms have been proposed in the literature for
finding such biclusters. These algorithms vary in their def-
inition of “coherence”, and thus focus on different types of

AA A A

AA A A

AA A A

AA A A

A A A A

B B B B

C C C C

D D D D

A+p

A+r

A+q

A A+a

A+p+a

A+q+a

A+r+a

A+b

A+p+b

A+q+b

A+r+b

A+c

A+p+c

A+q+c

A+r+c

(b)(a) (c) (d)

Figure 1: Types of biclusters: (a) Biclusters with constant values (b) Biclusters with constant rows (c)
Biclusters following an additive model (d) Biclusters with coherent evolutions.

biclusters corresponding to this definition. [15] have classi-
fied the biclusters found by these algorithms into four cat-
egories, as shown in Figure 1. These categories include (i)
biclusters with constant values, (ii) biclusters with constant
rows or columns, (iii) biclusters following an additive (or
multiplicative) model, and (iv) biclusters with coherent evo-
lutions. The problem we address in this paper is the same
as “finding constant value biclusters” as defined in [15].

Several biclustering algorithms, such as CC ([9]), ISA
([6]), SAMBA ([19]), OPSM ([5]) and co-clustering ([10])
, have been proposed to find different types of these biclus-
ters. However, these approaches suffer from three common
limitations. (i) Most of these approaches either adopt top-
down greedy schemes that start from all rows and columns,
and then iteratively eliminate rows and/or columns to opti-
mize their objective function ([10, 9]), or start with a ran-
dom initial seed and use heuristics to converge to the final
bicluster ([6, 5]). Due to the use of these heuristics, these al-
gorithm are unable to search the space of all possible biclus-
ters exhaustively. (ii) The objective of these approaches is
different from finding coherent value submatrices. For exam-
ple, CC finds constant row biclusters which have low mean
squared residue score and SAMBA finds maximum weight
bicliques. (iii) Small biclusters tend to get overshadowed by
noise and/or by larger biclusters due to the top-down nature
of the search. In particular, these techniques are not meant
to find constant value biclusters that are of interest to us.

Interestingly, pattern mining algorithms developed in as-
sociation analysis ([2, 8, 11]) also produce biclusters in bi-
nary market-basket-type data, where each row is a transac-
tion that indicates the purchase of items (represented along
columns) in a store. A pattern is a group of items (itemset)
purchased together in atleast a given fraction of transactions
and it can be represented as a submatrix with supporting
transactions as rows and items in the itemset as columns,
with all the values included being 1. So, these patterns are
essentially similar to constant value biclusters that we seek
to discover. However, they only work with binary data sets.
Recently, [16] have extended these algorithms to find con-
stant row/column biclusters in real-valued data, but their
approach still can not discover constant value biclusters ex-
clusively. Although constant row biclusters may include con-
stant value biclusters, these need to be identified by post-
processing, as we discussed in the evaluation section, this is
not an effective way to find coherent value biclusters.

In this paper, we present a novel framework to exhaus-
tively discover all RCBs in a given GI dataset. For this, we
define the notion of a coherent submatrix whose values are
within a pre-specified (relative) range, and refer to it as a
Range Constrained Block (RCB). The measure of coherence
used, named the Range measure, is monotonic in nature,

and thus makes it possible to develop an Apriori-like algo-
rithm ([1, 2]) to enumerate all RCBs whose value for the
Range measure is lower than the user-specified threshold.
This algorithm is guaranteed to recover all such coherent
submatrices in the given data set.

The rest of the paper is organized as follows. We discuss
some related approaches for the bicluster discovery problem
in Section 2. We present the RCB discovery framework in
Section 3. Section 4 details the quantitative evaluation of
RCBs. We conclude with suggestions for future work in
Section 5.

2. RELATED APPROACHES
Although our work is the first systematic approach for

the problem of finding constant value biclusters, this prob-
lem can be approached in other ways also. One of the most
straightforward approaches would be to binarize the data
matrix and use the Apriori algorithm [1] to find binary fre-
quent patterns, which are also biclusters. However, this is
not an ideal approach for our problem, since all the val-
ues are represented by 1 or 0, and thus even if such a pat-
tern is found, there is no guarantee on the coherence of the
values included in a bicluster so found. This problem is
shared by Ma et al.’s approach [14] for finding highly con-
nected subgraphs from a bipartite graph representation of
GI data. Ma et al.’s approach further faces the problem of
being non-exhaustive due to the heuristic search algorithm
employed. Another possible approach is to generate multiple
binary matrices with each matrix having 1s for values that
are within in a small range (window). This approach can
not find biclusters that have values that are in two adjacent
windows but still in a small range. Below, we discuss three
related approaches that focus on finding biclusters directly
from real-valued data. Note that these methods were orig-
inally developed for microarray data, but the formulations
and underlying principles apply directly to other types of
data also.

2.1 Range Support Patterns (RAP)
Pandey et al. [16] recently proposed an association anal-

ysis approach for finding constant row/column biclusters
(Figure 1(b)) directly from real-valued data. Here, they de-
fined the RangeSupport measure of an itemset as the sum
of the contributions of each transaction where the values of
these items are within a pre-specified (relative) range thresh-
old α, and are of the same sign. This contribution is defined
to be the minimum of the absolute value among the items
for a transaction that satisfies both these conditions, and
zero otherwise. This definition makes RangeSupport anti-
monotonic, and an Apriori-like algorithm is then used to
mine constant row/column biclusters from the given data

set. This approach has several desirable properties, such as
the exhaustive enumeration of all biclusters of this type, the
possibility of overlaps between biclusters and the ability to
discover small biologically meaningful biclusters. However,
these biclusters are only guaranteed to be coherent over one
of the dimensions (row or column), but not necessarily both
the dimensions, as is required for constant value biclusters.

2.2 Cheng and Church’s algorithm
Cheng and Church [9] (CC) proposed the first algorithm,

which we refer to as CC, to find biclusters in microarray
data. They used the mean squared residue (MSR) measure
to capture the coherence of expression values among a set
of genes across a subset of all the conditions, and focused
on finding biclusters with low MSR values. However, since
enumerating all such biclusters is an NP-hard problem, a
greedy heuristic approach to discover such biclusters is used.
This approach first starts with the entire matrix M and it-
eratively removes rows or columns that provided maximum
reduction in the MSR score until the MSR score is below
a user specified threshold, or a certain number of iterations
is reached. Provisions are also made for finding overlapping
biclusters. However, this algorithm faces several challenges
in finding constant value biclusters. First, since a heuristic
search algorithm is employed, it can not be guaranteed that
all biclusters with an MSR lower than the specified thresh-
old will be found. Also, CC generally finds biclusters of
large sizes since the termination criteria are generally satis-
fied early in the search process. Finally, CC tends to find
several biclusters with almost neutral (zero) values in them,
since they have MSR=0, which may not be useful if these
biclusters need to be analyzed further.

2.3 SAMBA
Tanay et al. [19] proposed the SAMBA algorithm for find-

ing biclusters, which they define as a group of genes that
jointly respond to a group of conditions. A gene is said to
respond to a condition if its expression level changes signif-
icantly relative to its expression under normal conditions.
The given gene expression data matrix is represented as a
bipartite graph with genes and conditions as the two sets
of vertices. An edge e connects gene u to condition v with
weight 1 if the expression level of u is significant under v

and −1 otherwise. The algorithm then tries to find maximal
weight subgraphs, all of whose edges of the same sign, in this
weighted bipartite graph using a heuristic search algorithm.
The genes and conditions constituting these subgraphs are
output as biclusters. It can be seen that, similar to binary
pattern mining, SAMBA ignores the importance of the real
values once it is determined if a value is significant or not.
Thus, the coherence of values constituting the resultant bi-
clusters is not guaranteed. Furthermore, SAMBA can not
guarantee finding all possible maximal weight subgraphs,
which is an NP-hard problem.

In summary, although various algorithms have been pro-
posed for finding different types of biclusters, none of them
exhaustively finds constant value biclusters, which are the
focus of our work. The challenges faced by these approaches
for this problem are reflected in the experimental results
discussed in Section 4.

3. RCB DISCOVERY APPROACH
In this section we introduce an Apriori-like framework to

mine RCBs from a real valued data set. For this, we first
define a range measure to capture the semantics of an RCB
and prove that it is monotonic. We then introduce a di-
agonal representation of a square sub-matrix, and describe
how it can be used to efficiently mine square RCBs using an
Apriori-like algorithm. This algorithm discovers a rectangu-
lar RCB in the form of multiple, overlapping square RCBs.
Finally, we present an Apriori-like algorithm to merge these
square RCBs, at the end of each level in the previous algo-
rithm, into rectangular RCBs. Note that although the RCB
mining framework is defined below for a data matrix that
has items of the same type on both of its dimensions, it can
be also be used for a data set that has different types of
items along the two dimensions.

3.1 Range measure
We defined RCB as a submatrix that has all values within

a given range. This range can simply be defined as a dif-
ference between the maximum and minimum value of the
submatrix. However, since most real data sets have a wide
range of values, we use a relative form of range to make its
definition more versatile. Formally, if G is any real val-
ued positive data matrix, for any submatrix GIJ , where
I = i1, i2, . . . , ik and J = j1, j2, . . . , jl constitute its two di-
mensions, and whose each element is gij (i ∈ I and j ∈ J),
the range of GIJ is defined in a straight-forward manner as:

range(GIJ) =
maxi∈I,j∈J (gij) − mini∈I,j∈J (gij)

mini∈I,j∈J (gij)
(2)

However, another complicating aspect of real-valued data
sets is that they contain both positive and negative values.
For example, in genetic interaction data, positive and neg-
ative values represent different types of interactions, as dis-
cussed earlier. This factor needs to be incorporated into the
definition of range, so that the resultant RCBs are coherent
not only in values, but also in their signs. We ensure this
by enforcing this constraint into the definition of the range

measure as formulated in Equation 3. Here, the range of a
submatrix that includes both positive and negative values
is simply set to infinity, so that it is not considered as an
RCB. Note that this constraint is supported by research on
genetic interactions, where it has been shown that groups
of genes (modules) having interactions of same type (sign)
are more functionally related than those involved in very
different types of interactions [21].

r(GIJ) =

8

>

>

>

<

>

>

>

:

range(abs(GIJ))
(if gij > 0 ∀ i ∈ I, ∀ j ∈ J

or
gij < 0 ∀ i ∈ I, ∀ j ∈ J)

∞ (otherwise)

(3)

Using this definition, it can be shown that the range mea-
sure has a monotonicity property, as shown by the following.

Theorem 1. Range measure is monotonic

Proof. Consider a submatrix GIJ of a matrix G, where
I = i1, i2, . . . , ik and J = j1, j2, . . . , jl are the two dimen-
sions of the submatrix and r(GIJ) ∈ [0,∞). Let I ′ = I∪ik+1

and J ′ = J ∪ jl+1.
The range of the submatrix r(GI′J′) will fall into one of

the following:
• The elements in GI′J′ have different signs: Now, r(GI′J′) =

∞. Since r(GIJ) ∈ [0,∞), r(GI′J′) ≥ r(GIJ).
• The elements in GI′J′ have the same sign: Two sub-cases
are possible in this scenario:
− max(GI′J′) = max(GIJ) and min(GI′J′) = min(GIJ).

Then r(GI′J′) = r(GIJ).
− max(GI′J′) ≥ max(GIJ) and/or min(GI′J′) ≤ min(GIJ).

Then r(GI′J′) ≥ r(GIJ).
Thus, r(GIJ) is monotonic.

Due to this monotonicity property, the range measure
can be used in a bottom-up Apriori-like algorithm to enu-
merate the all the RCBs in a given data matrix that satisfy
the given range constraint. Note that traditional frequent
pattern mining algorithms focus on patterns with support
greater than a user-specified threshold, while we discover
RCBs with range lower than the user-specified threshold,
thus enabling us to ensure coherence in both the dimensions
simultaneously. However, due to the complexities in this
search process discussed below, we adopt a two-step pro-
cess, in which first all the square submatrices that qualify to
be an RCB are enumerated, and then, these square RCBs
are merged to form rectangular RCBs of arbitrary sizes. We
describe the individual components of this process below.

3.2 Challenges in finding RCB patterns using
the standard Apriori like approaches

This process of finding RCBs, a search in a combination
of two dimensions, is a non-trivial problem and is computa-
tionally hard compared to the problem of frequent itemset
discovery. In discovering frequent itemsets, the Apriori al-
gorithm starts with a single items that are frequent. These
individual items are then merged to form candidate size-2
itemsets and their supported is computed. All frequent pairs
are further merged to form candidate itemsets of size-3 and
their support is computed. This process is repeated until no
more bigger itemsets can be found. One can design a simi-
lar approach for finding RCBs that hold a range constraint
(r) in a given genetic interaction matrix with m rows and
n columns as follows: all m × n individual elements in the
matrix are considered as candidate size-1 × 1 RCBs. Each
element that has a non-zero value is considered as a size-1×1
RCB, because range (r) for zero valued elements is ∞. Now,
for each of the size-1× 1 RCBs a row or column is added to
form candidate size-1×2 (or candidate size-2×1) RCBs. The
range measure can then be computed to determine size-1×2
(or size-2 × 1) RCBs. This approach for finding an m × n

RCB involves enumeration of (2m − 1)(2n − 1) smaller sub-
matrices in the process of discovering it. Where as, finding
a size-n itemset involves enumerating (2n − 1) smaller item-
sets.

Thus, RCB discovery is a combinatorial search in m ×
n space, whereas traditional frequent pattern mining is a
search in n-dimensional space. As a result searching for
RCBs in matrix with large dimensionality can be compu-
tationally inefficient if done in a simplistic fashion. In the
following subsection we present an approach to represent
a square RCB in the form a one-dimensional vector which
helps in discovering square RCBs efficiently.

3.3 Diagonal representation of square RCBs
We make use of the observation that a square sub-matrix

can be represented by the indices along the diagonal. Con-
sider a square sub-matrix GIJ , where I = i1, i2, . . . , ik and

J = j1, j2, . . . , jk are its two dimensions. This sub-matrix is
can be represented by its diagonal {(i1, j1), (i2, j2), . . . (ik, jk)}.
In other words, we can write it as {di1j1 , di2j2 , . . . dikjk

},
where dim,jn = (im, jn) for ∀im ∈ I, jn ∈ J . This diagonal-
set for a matrix can be considered analogous to an itemset
in the traditional association analysis. This representation
makes it easier to represent a size k square sub-matrix as a
one-dimensional vector of pairs of indices of length k. Using
this representation, all square RCBs can now be enumerated
efficiently in a manner similar to discovering frequent item-
sets in binary datasets. Thus the diagonal representation
facilitates efficient Apriori-based search for RCBs by map-
ping the two-dimensional search space into one-dimensional
search space.

In the following sub-section we present an Apriori like
algorithm that makes use of the diagonal representation for
discovering square RCBs. Since RCBs can be rectangular,
we then present an efficient algorithm that merges the square
RCBs of same size into rectangular RCBs in an Apriori-like
fashion.

3.4 Mining Square RCBs
As the first step of our RCB discovery process, we use the

following Apriori-like algorithm to discover all square RCBs
in a given data matrix for a user-specified range threshold.

Algorithm 1: 2-D Square RCB Approach

Input:
i. G, a real valued data matrix of size |m × n|, with items
I = {i1, i2, . . . im} and J = {j1, j2, . . . jn} along the two dimen-
sions
ii. δ, a range threshold
Output:
All square submatrices GI′J′ in G with r(GI′J′) ≤ δ

k = 1
Sk = {dij |gij 6= 0} // Find all size |1 × 1| RCBs
while Fk 6= ∅ do

k = k + 1
CSk = Apriori − gen(Sk−1)

// Generate all size k candidate RCBs
for each candidate csk ∈ CSk do

compute r(csk) using Eq. 3
end
Sk = {csk|csk ∈ CSk ∧ r(csk) ≤ δ}

end
Result =

S

Sk

This algorithm takes a real valued data matrix and a user-
specified range threshold as input and enumerates all square
sub-matrices in the given matrix for which the range con-
straint holds. To begin, since the range measure defined
in Equation 3 is ∞ for any sub-matrix that has all zero
elements, each non-zero element in the given data matrix
is treated as a level-1 square RCB. At level-2, each level-
1 RCB is paired with another level-1 RCB that has both
indices greater than itself to form candidate level-2 square
RCBs. Now, all the candidates that satisfy the range con-
straint are output as level-2 square RCBs. At the next level,
a candidate level-3 square RCB is generated from two level-2
square RCBs using Apriori − gen [2], a method used to ef-
ficiently generate candidate level-k itemsets from level-k− 1
frequent itemsets. Apriori − gen constructs a new candi-
date level-3 square RCB by combining two level-2 RCBs if
they have one element of the diagonal-set in common. More
generally, a candidate level-(k +1) square RCB is generated

from two level-k square RCBs if their diagonal-sets overlap
in k − 1 elements. Let {di1j1 , di2j2 , . . . dik−1jk−1

, dikjk
}

and {di1j1 , di2j2 , . . . dik−1jk−1
, dik+1jk+1

} be two level-k
square RCBs. Then, a level-(k + 1) candidate square RCB
is obtained by merging these two level-k square RCBs that
have k − 1 elements of their diagonal-sets overlapping. Fi-
nally, the candidate RCBs that satisfy the range constraint
are enumerated as the level-(k + 1) square RCBs. This pro-
cess is continued until no more sub-matrices satisfy the range
constraint.

3.5 Combining Square RCBs into Rectangu-
lar RCBs

Algorithm 1 can be used to discover all square RCBs in
a given data matrix. However, a naturally existing rectan-
gular RCB of size m × n (m > n) will result in

`

m
n

´

square
RCBs that share the same n indices along the shorter dimen-
sion. As each rectangular sub-matrix is broken into multiple
square sub-matrices that share the shorter dimension, we
need a method to join them. It is important to note that
all the squares that share the same dimension may not form
a rectangular RCB, but some combinations of these squares
could potentially hold the range constraint to form rectan-
gular RCBs. So, we use the following Apriori-like algorithm
to combine these square RCBs into rectangular ones that
satisfy the range constraint.

Algorithm 2: Mining Rectangular RCBs

Input:
i. G, a real valued data matrix of size |m × n|, with items
I = {i1, i2, . . . im} and J = {j1, j2, . . . jn} along the two dimen-
sions
ii. δ, a range threshold
iii. All maximal square RCBs at level-l that are enumerated by
Algorithm 1
Output:
All rectangular submatrices GI′J′ whose smallest dimension is of
length k in G with r(GI′J′) ≤ δ

for each set of square RCBs S = {s1, s2, . . . st} that have one
dimension of the square common do

k = 1
Rk = {si|∀si ∈ S}
while Rk 6= ∅ do

k = k + 1
CRk = Apriori − gen(Rk−1)

// Generate all size k candidate rectangular RCBs
for each candidate crk ∈ CRk begin

compute r(crk) using Eq. 3
end
Rk = {crk|crk ∈ CRk ∧ r(crk) ≤ δ}

end
Result =

S

Rk

end

Algorithm 2 takes all the maximal square RCBs at level-l
of Algorithm 1 as input and for each group of square RCBs
that have the same set of items across one dimension, it first
considers these square RCBs as level-1 rectangular RCBs,
analogous to level-1 itemsets in Apriori. It then enumerates
all possible combinations of level-1 rectangular RCBs using
Apriori − gen. Let s(S,Ti) and s(S,Tj) be the square RCBs
that have one dimension (S) in common and the other di-
mension (Ti, Tj ∈ T) that is different. A candidate level-2
rectangular RCB is obtained by merging the dimension that
is not common (Ti∪Tj) and by retaining the common dimen-

sion (S). So, the set of level-2 candidates is represented as
cr(S,(Ti∪Tj)). The candidates that satisfy the range thresh-
old are treated as level-2 rectangular RCBs R2. Similarly, at
any level-k, Apriori − gen is used to find candidate level-k
rectangular RCBs CRk from level k − 1 rectangular RCBs
Rk−1. All candidates that satisfy the range constraint are
enumerated as level-k rectangular RCBs Rk. This process is
iterated until no more candidate rectangular RCBs satisfy
the range threshold.

Thus, using Algorithm 2 all arbitrary size RCBs are enu-
merated that satisfy the user-specified range constraint. The
correctness of the overall RCB discovery algorithm is en-
sured, since only the candidates that pass the range thresh-
old are returned as RCBs. Theorem 2 proves the complete-
ness of this algorithm.

Theorem 2. RCB approach discovers all valid RCBs at
a given range r in a given data set G.

Proof. We prove this by induction. We first prove that
all valid square RCBs will be discovered by Algorithm 1.
Let G be the input data matrix. In the first level, all non-
zero elements in G are considered as level-1 square RCBs,
since the range of a non-zero element is zero and that of a
zero element is ∞. So, level-1 is complete. Now, consider
the set of level-k square RCBs Sk and assume that it is
complete. Since, Algorithm 1 uses Apriori − gen(Sk) to
enumerate all possible candidate level-(k + 1) square RCBs
CSk+1 and tests them for the range constraint, level-(k +1)
is also complete. By induction, Algorithm 1 generates the
complete set of square RCBs at any level.

We now prove that Algorithm 2 generates all possible rect-
angular RCBs from the set of level-l square RCBs. Since Al-
gorithm 2 finds rectangular RCBs from each group of level-l
square RCBs that share one dimension, we focus on proving
that Algorithm 2 generates all possible rectangular RCBs
for one such group. Since Algorithm 2 considers all level-l
square RCBs that have one dimension in common, the set
of level-1 rectangular RCBs R1 is complete. Now, consider
level-k rectangular RCBs Rk and assume that it is complete.
Since Apriori − gen(Rk) is used to generate all candidate
level-(k+1) rectangular RCBs CRk+1 and each candidate in
CRk+1 is tested for the range constraint, level-(k +1) in Al-
gorithm 2 is complete. By induction, Algorithm 2 generates
the complete set of rectangular RCBs at any level.

This proves the completeness of our algorithm.

We now discuss the performance of this RCB discovery
algorithm when tested on genetic interaction data.

4. EXPERIMENTAL RESULTS
In this section we evaluate the proposed RCB discov-

ery approach on a genetic interaction data set and com-
pare its performance with other approaches discussed in Sec-
tion 2, namely binary frequent patterns(FP), RAP, CC and
SAMBA.

4.1 Experimental Design
We tested our proposed scheme on a dataset of genetic in-

teractions consisting of weighted positive interactions, among
500 query (row) and 3893 array (column) genes. The val-
ues in this data set belong to the interval [0, 357]. As the
values close to zero correspond to neutral interactions and

are also prone to distortion due to noise, we used a spar-
sification threshold γ, and replaced the values less than γ

by zero. Sparsification threshold used in our experiment
vary between 30 and 50. Sparsified matrices are used for
mining maximal RCB biclusters at varying range thresholds
between 0.3 and 1.5 and different aspects of the performance
of the RCB mining approach are analyzed. Note that only
RCBs larger than 3 × 3 are analyzed to simplify the dis-
cussion since there are far too many blocks of smaller sizes
(many of which could be spurious due to noise in the data).

To assess the relative utility of our proposed scheme with
respect to the approaches discussed in Section 2, namely bi-
nary frequent patterns(FP), RAP, CC and SAMBA, we also
generated biclusters using them. Binary frequent patterns
are generated by first constructing a binary matrix G1/0

from the data matrix G, where each element g1/0ij
is 1 if

its corresponding element in G, gij ≥ γ, and 0 otherwise.
Borgelt’s implementation [7] of Apriori algorithm [2] is used
to discover frequent patterns (biclusters) from the binary
matrix G1/0. The lowest possible support threshold with
which this implementation could run without ‘running out of
memory’ was chosen at different sparsification thresolds, and
is reported in Table 1 as σ. The RAP code1 is then used to
discover biclusters on the matrix G using support thresholds
determined using the median support of each item. Since
RAP is meant to find one-dimensional constant row biclus-
ters (Figure 1(b)), we used it to discover biclusters from
both the dimensions (array and query genes respectively)
of G, in order to ensure completeness for comparison. The
RAP and binary patterns (biclusters) obtained from these
transformed matrices are filtered out if the length of any
one dimension is less than 3, since we limit our analysis to
RCB biclusters of size 3 × 3 or more. Note that only closed
patterns obtained from Apriori and RAP patterns are con-
sidered for further analysis, since they represent all distinct
patterns. Note that maximal patterns found by RCB (since
they are computed in two dimensions) correspond to closed
itemsets. In addition, we also generated biclusters from this
data set sparsified using γ = 40 using the SAMBA algorithm
implemented in the Expander tool [17] with the parameter
#probes set to 10 and 100. Finally, we also generated 100
biclusters using CC with two parameter settings δ = 0.3 and
δ = 0.5 as specified in the BiCAT tool [4]. CC when run on
a sparsified version of the data discovered biclusters filled
with zeros, owing to the fact that MSE for a bicluster with
zeros is zero. So, to help CC find reasonbale biclusters the
original version of the data matrix was used. All these ex-
periments are run on an eight-processor computer with total
32 GB memory, running Linux.

4.2 Quantitative Evaluation of RCBs
Table 1 provides a global overview of the performance of

the different algorithms. In this subsection, we discuss some
of these aspects in detail. This table presents the different
parameter settings, number of biclusters found, variation in
the size of biclusters (denoted as L−M , where L = |I|× |J |
for the smallest bicluster GIJ and M is computed similarly
for the largest bicluster) and range (r as in Eq 3).

From Table 1 it can be seen that the number of RCBs,
FP patterns discovered at low sparsification threshold γ are
more in number due to the density of the values in the ma-

1http://vk.cs.umn.edu/gaurav/rap/

Title Parameter # Size of Average
Settings biclusters biclusters Range (r)

RCB biclusters
RCB1 δ = 0.3, γ = 30 8794 9-18 0.2617
RCB2 δ = 0.5, γ = 30 107799 9-27 0.4352
RCB3 δ = 0.3, γ = 40 991 9-15 0.2600
RCB4 δ = 0.5, γ = 40 12099 9-24 0.4333
RCB5 δ = 0.7, γ = 40 44044 9-39 0.6041
RCB6 δ = 1, γ = 40 127884 9-51 0.8541
RCB7 δ = 0.7, γ = 50 6847 9-30 0.5920
RCB8 δ = 1, γ = 50 16182 9-45 0.8237
RCB9 δ = 1.2, γ = 50 24584 9-48 0.9840
RCB10 δ = 1.5, γ = 50 32049 9-57 1.1722

Binary Patterns
FP1 σ = 6, γ = 30 581916 30-102 4.6778
FP2 σ = 4, γ = 40 142480 12-92 2.3624
FP3 σ = 3, γ = 50 30663 9-75 2.1087

RAP biclusters (on query genes)
RAP1 σ = 500, δ = 0.5 146 15-45 1.8999
RAP2 σ = 500, δ = 0.7 610 15-72 1.9673
RAP3 σ = 500, δ = 1 1758 15-93 2.1386

RAP biclusters (on array genes)
RAP4 σ = 257, δ = 0.5 2662 9-27 1.5870
RAP5 σ = 257, δ = 0.7 9138 9-33 1.7070
RAP6 σ = 257, δ = 1 24920 9-40 1.8494

CC biclusters
CC1 δ = 0.3 100 187-3249 ∞

CC2 δ = 0.5 100 273-2940 ∞

SAMBA biclusters
SAMBA1 # probes = 10 10 234-1314 ∞

SAMBA2 # probes = 100 349 120-1450 ∞

Table 1: Statistics of biclusters generated at various

parameter settings from the GI data set

trix. As the sparsification threshold is increased, RCB, FP
and RAP discovery approaches discover fewer patterns. It is
important to note that FP and RAP approaches use support
to contain the complexity of the search space, where as RCB
uses range measure to contain the complexity. Since no co-
herence in values is ensured on FP and RAP patterns they
have high average range, where as the patterns discovered
by RCB patterns have the average range less than the speci-
fied thresholds. The CC and SAMBA patterns are generally
very large in size because of the top-down approach that is
employed and also contain many 0 values within them. So,
we do not consider these for further analysis.

In summary, our RCB mining approach is able to discover
a larger number of coherent blocks from the genetic interac-
tion matrix, which have low average range compared to the
competing approaches. Furthermore, RCB biclusters also
cover more interactions in a GI dataset as shown in Section
4.5.

4.3 Statistical significance of RCBs
One of the important steps in analyzing real-life data, such

as the GI data in our study, is to assess the validity and sig-
nificance of the entities being mined from them. A common
method for doing this is to randomize the data and mine
the same type of entities from this randomized data set. A
meaningful analysis should find significantly more of these
entities from the real data as compared to the randomized
version. We performed such an analysis for RCB mining
from GI data. We found 12099 RCBs in the RCB4 set using
δ = 0.5 and γ = 40 from the GI data set. Also, we generated
30 randomized versions of this data set by randomly permut-
ing the entries in each row, and derived RCBs from them us-
ing the same parameter settings as RCB4. Two observations
can be made from these results. First, very few RCBs (348

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Range measure (r)

M
ea

n
F

E
 s

co
re

	

FP2_3x3

Figure 2: Relationship between Range (r) and Func-
tional Relatedness (FE).

on average) are found from the randomized data sets. Sec-
ond, the sizes of these RCBs are substantially smaller than
the sizes of those in the RCB4 set, with most of the RCBs in
the RandRCB4 (over 90%) being 3×3 blocks. The results of
this analysis indicate that the products of our RCB mining
approach are indeed statistically significant. The biological
significance of some of these blocks is discussed in the next
section.

4.4 Functional Evaluation
Since the groups of genes constituting a submatrix with

coherent values are expected to be functionally coherent,
we evaluate this using a measure of functional relatedness
derived from sources of information about gene function
that are independent of GI data. In particular, we use
Functional-coExpression (FE) that is derived from 40 dif-
ferent micro-array data sets [12]. Here the probability for
two genes to be co-annotated to the same Gene Ontology
Biological Process (GO BP) function is computed on their
levels of co-expression in these datasets. We refer interested
readers to the corresponding paper for details on this mea-
sure, but stress that the basic purpose is to quantify the
degree of functional relatedness of two genes.

Genes constituting both the dimensions of a submatrix
are said to be functionally related, if each gene-pair which
is a combination of one gene from each group has high
functional-coExpression score. So, for any given submatrix,
we compute the functional relatedness as the mean of the
FE score for each interacting gene pair covered by the sub-
matrix. Although it is possible to evaluate the relationship
between range and the FE score on RCB patterns, the av-
erage range of the binary patterns is higher (as shown in
Table 4.2) and so we use the binary patterns to evaluate
this relationship. We evaluated the relationship between
the functional relatedness and the range measure r, by enu-
merating all possible 3 × 3 size blocks for randomly chosen
10,000 patterns in FP2, which we refer to as FP2 3 × 3.

The FE score and the range are computed for each such
3 × 3 size block enumerated. The median of the FE scores
for corresponding range values are presented in Figure 2. It
can be seen that the blocks with a small range value, have
high FE score and the blocks with large range value has
low mean FE score. This indicates that the groups of genes
representing the coherent submatrices are more functionally
related than the groups of genes representing the less coher-
ent submatrices.

4.5 Comparison of our RCB finding algorithm
with post-processing of FP and RAP

It is also possible to enumerate all possible submatrices
from binary patterns and RAP patterns and select the sub-
matrices that satisfy a given range threshold. To demon-
strate the effectiveness of RCB, we enumerated all possible
submatrices that satisfy the range constraints for FP1, FP2,
RAP1, RAP2 and RAP3. As the size of the CC and SAMBA
patterns are typically large relative to the FP and RAP pat-
terns, enumerating all possible submatrices is infeasible. So,
we restrict our analysis to FP and RAP patterns. For FP1,
the range threshold δ = 0.3 and δ = 0.5 are used to com-
pare them with RCB1 and RCB2 respectively. For FP2, the
range threshold δ = 0.3, δ = 0.5, δ = 0.7 and δ = 1 are
used to compare them with RCB3, RCB4, RCB5 and RCB6
respectively. For RAP patterns the δ that was used in Table
1 was chosen. For each set of patterns, the number of genes
covered in both the dimensions, total number of interactions
covered i.e. the area in the data matrix that the discovered
patterns cover, time taken are tabulated in Table 2.

Title Range # Genes # Interactions Time taken
(δ) covered covered (in hours)

RCB biclusters
RCB1 0.3 (408, 2437) 26664 1.62
RCB2 0.5 (484, 3391) 54842 3.2
RCB3 0.3 (216, 765) 4959 0.29
RCB4 0.5 (327, 1594) 16550 0.41
RCB5 0.7 (371, 1986) 22516 0.8
RCB6 1 (415, 2234) 26054 7.12

Binary Patterns
FP1a 0.3 (293, 641) 6169 0.2
FP1b 0.5 (433, 1263) 22947 0.32
FP2a 0.3 (170, 421) 2642 0.06
FP2b 0.5 (286, 981) 10858 0.07
FP2c 0.7 (340, 1262) 16394 0.1
FP2d 1 (384, 1447) 20034 0.3

RAP biclusters (on query genes)
RAP1 0.5 (53, 303) 1467 0.04
RAP2 0.7 (89, 756) 4959 0.06
RAP3 1 (111 ,1123) 8607 0.23

RAP biclusters (on array genes)
RAP4 0.5 (156, 277) 2404 0.13
RAP5 0.7 (212, 502) 5987 0.28
RAP6 1 (280, 658) 9648 0.71

Table 2: Comparison of RCB with FP and RAP (with

post processing) at various range thresholds.

RCBs cover more number of genes in both dimensions
than FP and RAP patterns. Specifically, comparing the
coverage of the sets RCB1 and FP1a, RCB1 covers approx-
imately twice as many genes covered by FP1a in the query
dimension and four times as many genes in the array di-
mension. They also cover four times as many interactions
covered by the FP1a. This difference is relatively less at
high sparsification thresholds γ, due to the sparse nature
of the resulting binary matrix. The coverage of the genes
and interactions is much less for the RAP patterns. This
is due to the fundamental difference between the RCB ap-
proach and the general frequent pattern based approach.
The RCB approach builds blocks in a bottom up fashion
starting with a 1 × 1 block and gradually increasing its size
in either dimensions while using range measure to control
the complexity of the search space. On the other hand, FP
based approaches start with single item that can have some
support, which monotonically decreases as the size of item-
set increases. The use of high support thresholds needed to
contain the complexity resulting from the high density of the

data prevents FP based approaches from discovering small
patterns that RCB can capture. For example, FP1 patterns
are generated using σ = 6 which means each pattern gen-
erated should have atleast 6 genes on the query dimension.
On the other hand, the coherent blocks of smaller sizes (of
the order 3 × 3) exist in a large number compared to the
bigger blocks in the data set (as shown in Table 4.2). So,
these patterns cannot be discovered using the traditional fre-
quent pattern based approaches especially at low sparsifica-
tion thresholds, whereas RCB can discover all such patterns
for a given range threshold δ.

On the other hand, from Table 2 the time taken for RCB
generally appears to be larger than that of FP patterns, but
note that the RCB patterns usually cover many more num-
ber of interactions than the FP patterns. Considering the set
of biclusters in RCB6 and FP2d, RCB6 appears to require
more time, but FP2d covers less number of interactions that
of RCB6 because of a support threshold of 4, which causes
it to miss many patterns of size 3 × 3. Note that the lowest
possible support is being used to generate the FP patterns
without ‘running out of memory’. Similarly, the time taken
for discovering RCB2 is more than that of FP1b. However,
the number of interactions covered by RCB2 is more than
twice as many as FP1b, also due to the use of high support
to contain the complexity resulting from the density of the
matrix at sparsification level γ = 30. This indicates that the
RCB is an efficient and systematic approach to discover all
the submatrices with range less than a given threshold than
the other approaches.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel association analysis

framework for mining (nearly) constant value submatrices
from real valued genetic interaction datasets. We evalu-
ated the proposed RCB discovery approach and compared
its performance with other approaches, namely binary fre-
quent patterns (FP), RAP, CC and SAMBA. Our results
show that the gene modules representing the biclusters with
similar values are more functionally related than the gene
modules representing biclusters with diverse values. Fur-
thermore, our approach can exhaustively find all the biclus-
ters with range r less than a given threshold. This is not
possible with other approaches, even when they are cou-
pled with an exhaustive post-processing phase to enumerate
submatrices with range within a given δ. Finally, we have
shown that the RCBs discovered are statistically significant
and are also biologically meaningful. This work can benefit
from further research in many directions. The process of
discovering RCBs can be made faster using specialized data
structures and algorithms, such as hash trees. Our approach
like other association analysis based approaches, provides a
large number of patterns, many of which may be slight vari-
ation of the other patterns. Summarization techniques such
as those in [22] will be helpful for the effective utilization of
RCB patterns in practical settings.

6. ACKNOWLEDGEMENTS
This work was supported by NSF grants #IIS0916439,

#CRI-0551551, a University of Minnesota Rochester Biomed-
ical Informatics and Computational Biology Program Trainee-
ship Award. Access to computing facilities was provided by
the Minnesota Supercomputing Institute.

7. REFERENCES
[1] R. Agrawal et al. Mining association rules between

sets of items in large databases. In Proc. SIGMOD,
pages 207–216, 1993.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. VLDB, pages 487–499, 1994.

[3] L. Avery and S. Wasserman. Ordering gene function:
The interpretation of epistasis in regulatory
hierarchies. Trends in genetics, 8(9):312, 1992.

[4] S. Barkow et al. BicAT: a biclustering analysis
toolbox. Bioinformatics, 22(10):1282–1283, 2006.

[5] A. Ben-Dor et al. Discovering Local Structure in Gene
Expression Data: The Order-Preserving Submatrix
Problem. JCB, 10(3-4):373–384, 2003.

[6] S. Bergmann et al. Iterative signature algorithm for
the analysis of large-scale gene expression data.
Physical Review, 67(3):031902, 2003.

[7] C. Borgelt. Efficient implementations of apriori and
eclat. In FIMI, 2003.

[8] A. Ceglar and J. F. Roddick. Association mining.
ACM Comput. Surv., 38(2):5, 2006.

[9] Y. Cheng and G. Church. Biclustering of Expression
Data. In Proc. ISMB Conference, pages 93–103, 2000.

[10] I. Dhillon et al. Information-theoretic co-clustering. In
Proc. SIGKDD, pages 89–98, 2003.

[11] J. Han et al. Frequent pattern mining: current status
and future directions. DMKD, 15:55–86, 2007.

[12] C. Huttenhower, M. Hibbs, C. Myers, and O. G.
Troyanskaya. A scalable method for integration and
functional analysis of multiple microarray datasets.
Bioinformatics, 22(23):2890–2897, 2006.

[13] R. Kelley and T. Ideker. Systematic interpretation of
genetic interactions using protein networks. Nature
biotechnology, 23(5):561–566, 2005.

[14] X. Ma et al. Mapping genetically compensatory
pathways from synthetic lethal interactions in yeast.
PLoS ONE, 3(4):e1922, 2008.

[15] S. C. Madeira and A. L. Oliveira. Biclustering
algorithms for biological data analysis: a survey.
IEEE/ACM TCBB, 1(1):24–45, 2004.

[16] G. Pandey et al. Association Analysis Approach to
Biclustering. In Proc. SIGKDD, 2009.

[17] R. Shamir et al. EXPANDER – an integrative
program suite for microarray data analysis. BMC
bioinformatics, 6(1):232, 2005.

[18] R. St Onge et al. Systematic pathway analysis using
high-resolution fitness profiling of combinatorial gene
deletions. Nature Genetics, 39(2):199–206, 2007.

[19] A. Tanay et al. Discovering statistically significant
biclusters in gene expression data. Bioinformatics,
18(90001):S136–S144, 2002.

[20] A. Tong et al. Global mapping of the yeast genetic
interaction network. Science, 303(5659):808–813, 2004.

[21] I. Ulitsky et al. From E-MAPs to module maps:
dissecting quantitative genetic interactions using
physical interactions. Molecular Systems Biology, 4(1),
2008.

[22] C. Wang and S. Parthasarathy. Summarizing itemset
patterns using probabilistic models. In KDD, page
735, 2006.

