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The continuously increasing cost of the US healthcare system has received significant attention. Central
to the ideas aimed at curbing this trend is the use of technology, in the form of the mandate to implement
electronic health records (EHRs). EHRs consist of patient information such as demographics, medications,
laboratory test results, diagnosis codes and procedures. Mining EHRs could lead to improvement in patient
healthcare management as EHRs contain detailed information related to disease prognosis for large patient
populations. In this manuscript, we provide a structured and comprehensive overview of data mining
techniques for modeling EHR data. We first provide a detailed understanding of the major application areas
to which EHR mining has been applied and then discuss the nature of EHR data and its accompanying
challenges. Next, we describe major approaches used for EHR mining, the metrics associated with EHRs,
and the various study designs. With this foundation, we then provide a systematic and methodological
organization of existing data mining techniques used to model EHRs and discuss ideas for future research.
We conclude with a case study of patients diagnosed with Type 2 diabetes mellitus (T2DM).
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1. INTRODUCTION
Numerous recent studies have found the health care system in the United States to
be the most expensive in the world, yet trailing behind most advanced economies in
quality [Schuster et al. 1998; Wang et al. 2012]. The cost of health care is steadily
increasing both in absolute cost and as a percentage of the GDP, soon reaching
unsustainable levels [Levit et al. 2003; Reinhardt et al. 2004]. To curb this trend,
simultaneous improvements in quality and decrease in cost are necessary. Many
believe that advanced analytics holds the key to achieve these opposing goals.

The foundation for analytics is data. The US government has mandated health care
providers to implement electronic health record (EHR) systems with a primary goal of
documenting patients’ care. This effort has already been a success. Multiple studies
have demonstrated that EHRs have reduced clinical errors [Singh et al. 2008; Singh
and Graber 2010; Singh et al. 2012; Abramson et al. 2011; Agrawal and Wu 2009],
improved chronic illness care [Dorr et al. 2007; Meigs et al. 2003; Shortell et al. 2009;
Rollman et al. 2002; Crosson et al. 2007] and improved the completeness, accuracy
and timeliness of case reporting to public health. EHRs provide unprecedented
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opportunities to identify genetic variants that influence susceptibility to common,
complex diseases across geographies [Manolio 2009]. Also, since EHR systems store
detailed care information about potentially very large patient populations with long
follow-up times, they are exceptionally well positioned to serve as a research platform
enabling advanced analytics.

The motivation for advanced analytics comes from another government mandate
that transforms the current fee-for-service payment model to a new model based on
population health management. Under the new model, primary care providers are
responsible for managing entire patient populations with their payments tied to care
quality. Since care providers are no longer paid for services rendered, but rather for
the outcomes of the service, they are incentivized to increase their efficiency through
implementing better care practices, thus creating an opportunity for analytics.

The cornerstone for modern medicine is evidence-based practice [Sackett 2000].
At the heart of evidence-based practice lies a large knowledge base of best practice
recommendations that have been put forth by committees of well-established care
providers and (ideally) validated through randomized clinical trials. These best
practice recommendations, if followed, enable providers to increase their efficiency
and reduce waste. Generating potential evidence, which of course needs validation
through the rigorous clinical trials framework, is one outlet for advanced analytics
to impact practice. It is not the only outlet, but it is certainly one that is tested and
proven.

The traditional vehicle for evidence creation is the Randomized Clinical Trial
(RCT) [Matthews 2006]. RCTs are controlled studies that select subjects based on
well-defined criteria and procedures (known as the protocol) and then randomly
assign these subjects to treatment and control groups. RCTs are considered the gold
standard for evidence creation, but they suffer from some well-known limitations,
namely, high cost, small sample size [Schulz and Grimes ; Chan et al. 2008; Passamani
et al. 1985; Van Spall et al. 2007; Olschewski et al. 1992; Moore et al. 1996; Gurwitz
et al. 1992], a limited ability to account for confounding factors [Rothwell ; Sacco
et al. 1995] or comorbidities [Fortin et al. ], and short duration [Kakkar et al. 2008].
High cost relegates RCTs to a confirmatory role, where previously hypothesized
recommendation can be confirmed. Thus, less expensive methodologies are often
employed to generate new recommendations.

One of these methodologies is observational studies, which are analyses carried
out on previously existing data, such as EHR data. While observational studies are
less expensive than RCTs, their results are also less reliable. Subjects for RCTs are
selected specifically to minimize any difference between the treatment and control
groups, yielding a trial population with potentially very little resemblance to the
original subject population. On the other hand, data in EHR system was not even
collected with analytics as the primary purpose. Thus carrying out observational
studies on EHR data requires techniques that address shortcomings of EHR data.

Currently this need is mostly filled by a number of health-related analytical
disciplines. Most notably, health sciences research, epidemiology and biostatistics
have embraced observational studies and have successfully developed techniques to
extract reliable knowledge from this abundant but noisy preexisting data. In contrast
to the above analytic disciplines, data mining is known for its flexible modeling
approach and has a proven track record of extracting actionable knowledge from large
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collections of data in a wide range of collections such as e-commerce, social-media,
recommender-systems, etc. The emerging discipline of clinical data mining aims
leverage the strengths of data mining and health-related analytical disciplines to
develop methods that better meet the challenge of extracting knowledge out of large
collections of health-related data, primarily EHR data. Clinical data mining stands
at the intersection of epidemiology, biostatistics, data mining and machine learning,
borrowing methodologies from epidemiology and biostatistics for study design and to
overcome the EHR data challenges.

Advanced analytics, through flexible modeling, has great potential in health care.
Mining EHR data can provide useful information to evaluate condition-specific clinical
process metrics and outcomes, facilitate clinical decision support, enhance team-based
population care outside the traditional face-to-face clinical encounter and provide
feedback on specific patient populations at the point of care. EHR data can also
provide superior public health surveillance information on chronic conditions such as
asthma [Fiks et al. 2009; Davis et al. 2010] and Type-2 Diabetes Mellitus (T2DM)
[Weber et al. 2008; OConnor et al. 2011]. It can also help in comparing risks due to
community factors such as economic disparity [Bilheimer and Klein 2010; Roblin et al.
2009].

With all three ingredients of success for data mining—data, motivation and outlets
for results—having come together, we believe that an explosive growth in the adoption
of clinical data mining is imminent. Given the unique challenges that EHR data
poses, a wave of innovation in data mining will ensue. In this survey, beside reviewing
existing work on clinical data mining involving EHR data, we also summarize back-
ground knowledge on study design, the characteristics and challenges of EHR data,
and techniques developed by other disciplined to address these challenges. (Although
needed for the survey, these sections present concepts and techniques that are not
well known in data mining, but have potential uses beyond EHR data.) It is our hope
that this survey will contribute to the acceleration of innovation that will allow data
mining to find the high level of success in health care that it has already achieved in
other areas.

Overview Following a description of application areas in Section 2, we describe
EHR data in Section 3 and its associated challenges in Section 4. Given the unique
nature of EHR data, these challenges have been addressed in data mining and
machine learning community only to a very limited extent. Section 5 introduces
metrics that are used to measure the outcome of a treatment or study, while Section
6 describes study designs, which are the cornerstone of EHR data mining. In Section
7, we introduce techniques developed in other fields, most notably epidemiology and
biostatistics, that address many of the challenges we discussed in Section 4. In Section
8, we turn our attention back to data mining and its contribution to the field of EHR
mining. We provide a comprehensive overview of how data mining methods have been
applied to mine EHR data. In Section 9, we provide an overview of clinical research
carried out in various applications areas, which were introduced in Section 2. Finally,
in Section 10, we analyze the current state-of-the-art and analyze our findings. In
Section 11, we discuss the future of EHRs in relation to data mining and in Section
12, we present a short conclusion. In the Appendix, we present a case study that
successfully answers complex clinical questions and serves as an illustration of how
study design, data challenges and data mining methods interact.
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2. APPLICATION AREAS
An appropriate place to start our discussion of clinical data mining is to describe some
clinical questions that data mining can help answer. The fundamental question of
medicine is to decide on the treatment that is most suitable and effective for a par-
ticular patient and data mining has the potential to help address this question in
numerous ways. In this section, we present a sequence of increasingly complex clini-
cal applications, starting with the simplest epidemiological questions, continuing with
common clinical research tasks such as automatic identification of study cohorts, risk
prediction and risk factor discovery, all the way to complex applications such as dis-
covering knowledge related to best clinical practices from data.

2.1. Understanding the Natural History of Disease
The most basic epidemiological inquires are not data mining problems per se, they
are concerned with question like: How many patients at a particular time are affected
by this condition? How many new cases do we discover each year? What are the
symptoms of the disease? What is the natural history of the disease, or in other words,
what are the precursors and consequences of this condition?

Studying the sequences of diseases clearly enters the realm of data mining and it
has been applied to studying the progression of a patient’s medical state over time,
which is also known as the patient’s medical trajectory. Examples of such trajectories
are the progression of the patient from a healthy state through conditions like
hypertension, hyperlipidemia, impaired fasting glucose (IFG), T2DM and eventually
towards diabetes associated complications (e.g. amputation, severe paralysis or
death). Often, multiple trajectories lead to the same outcome. For example, consider
an outcome such as mortality. In this case, a patient might die due to kidney compli-
cations, cardio-vascular complications or peripheral complications. Even though the
outcome (complications in this case) is the same, disease progression paths leading
to the outcome might be different. Research studies have observed that such varying
trajectories can have significantly different associated risks for the same outcome. Ex-
amining such varying trajectories can lead to the development of tailored treatments,
discovery of biomarkers or the development of novel risk estimation indices.

Comorbidity analysis is the process of exploring and analyzing relationships be-
tween frequently co-occurring diseases. For example, patients suffering from type 2
diabetes mellitus (T2DM) often also suffer from hypertension, hyperlipidemia and im-
paired fasting glucose (IFG). Some diseases occur in clusters and it is desirable to
treat them simultaneously. Further, analyzing the comorbidities and discovering the
relationships among them, can lead to the modification of existing comorbidity scores
(such as Charlson index) or to the development of novel ones.

2.2. Cohort Identification
Once we understand these fundamentals, we can try answering more advanced
questions. To this end, we may need to assemble a cohort (group) of patients, some
of whom are extremely likely to have the diseases (cases) and others who most
likely do not (controls). This can be achieved through phenotyping algorithms, either
hand-crafted or machine learned. Phenotyping algorithms characterize the disease in
terms of patient characteristics observable from the EHR data and classify patients as
likely having the disease, likely not having the disease, or disease status is uncertain.
Phenotyping algorithms are at the heart of modern cohort discovery; the problem of

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: April 2016.



Mining Electronic Health Records (EHR): A SurveyDo Not Circulate 1:5

identifying patients with certain diseases and certain other clinical characteristics.

Traditionally, cohort identification was carried out through chart reviews, where
nurse abstractors have painstakingly reviewed patients’ medical records to determine
whether the patient meets the criteria for inclusion into the cohort. However the scale
enabled by EHRs renders manual chart review impractical. Instead, electronic pheno-
typing algorithms are applied, with manual chart review relegated to spot-checking.
Cohort identification has been widely used in various clinical research studies and
biomedical applications. This process is often the platform for carrying out future
studies in areas such as pharmacovigilance, predicting complications, and quantifying
the effect of interventions.

A phenotype is defined as a biochemical or physical trait of an organism, such as
a disease, physical characteristic, or blood type, based on genetic information and
environmental influences. Examples of phenotypes in EHRs are clinical conditions,
characteristics or sets of clinical features that can be determined solely from the EHR
data and do not require a chart review or interpretation by a clinician. Such tech-
niques are useful for identifying patients or populations with a given characteristic or
condition of interest from EHRs using data that are routinely collected in EHRs or
ancillary data sources such as disease registries or claims data. Phenotyping queries
used for cohort identification can be replicated at multiple sites in a consistent fashion
in order to ensure that populations identified from different healthcare organizations
have similar features. Phenotypic definitions can also be used for direct identification
of cohorts based on population characteristics, risk factors, and complications, allowing
decision-makers to identify and target patients for screening tests and interventions
that have been demonstrated to be effective in similar populations.

2.3. Risk Prediction/Biomarker Discovery
With a cohort in hand, we can build predictive models, opening up a wide range
of opportunities for data mining. These models can predict the risk of disease, e.g.
estimating the probability of developing a condition of interest in 5 years (risk predic-
tion) helping health care provider focus their limited resources or investigate which
predictors are relevant (biomarker discovery, risk factor discovery) in developing the
outcome in question. Accurate knowledge of risk factors can help guide preventive
efforts or focus interventions.

Risk prediction is the problem of constructing predictive models to assess the
patient’s risk and progression from a patient’s current medical state to a medical
state associated with potentially advanced medical complications. Such analysis is
often performed to identify high risk individuals, thereby facilitating the design and
planning of one’s treatment plan [Ng et al. 2014; Tran et al. 2014b; Rekatsinas et al.
]. Such analysis might lead to improvement in a patient’s health, thereby preventing
the patient from progressing to advanced complications. In some cases, predicting the
patient’s risk of progression is secondary to understanding the underlying risk factors.
Risk models can provide information about the importance of risk factors.

With the availability of EHRs, models can be developed for assessing the patient’s
risk for multiple diseases. Such models also have the capability to capture effects
arising due to demographic attributes such as age, gender, race, ethnicity and social
status. Further due to the interoperability associated with EHRs, models can also be
developed using data across geographies thereby incorporating the genetic makeup of
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the patients.

Risk prediction also provides the opportunity to identify significant indicators
of a biological state or condition. In simple terms, a biomarker is defined as a set
of measurable quantities that can serve as an indicator of a patient’s health. For
example, abnormal hemoglobin A1C is a biomarker for T2DM and hyperlipidemia
is a biomarker for being at risk of cardio-vascular complications. Similarly, there
are certain biomarkers, which are common across many diseases. For example, age
is by far the most common biomarker. It indicates that as a person ages,his or her
risk to acquire certain diseases (e.g T2DM, cardio-vascular complications and kidney
complications) increases. EHRs provide a platform to identify, analyze and explore
biomarkers for different diseases.

Biomarkers offer a succinct summary of the patient’s state with respect to a medical
condition. Rather than having to analyze the thousands of variables present in an
EHR, it can be sufficient to focus on relatively few biomarkers to paint a reasonably
accurate picture of the patient’s overall health. Over the years, biomarkers have found
numerous applications. They can be used in rule-based systems to identify cohorts for
a clinical trial or to enhance existing risk indices (e.g. Framingham risk scores ). Data
mining techniques have been extensively used to discover biomarkers.

2.4. Predicting the next complication: What and When
The availability of large patient cohorts across longer observation periods provide
an opportunity to build clinical decision support models that can be used to predict
complications across multiple observation periods. Such models would be quite useful
for assessing the risk caused by disease such as T2DM, where it takes around 5-10
years for a patient to progress from one state of complication to another potentially
advanced complication or for disease such as sepsis, where it takes couple of hours for
a patient to progress from healthy state to a critical one. This becomes more relevant
as patients follow multiple health trajectories, often leading to life threatening
conditions including mortality [Hripcsak et al. 2015; Park and Ghosh 2014a]. In such
a scenario, predicting the next complication is a challenging problem. For example,
predicting the next hospitalization for a patient diagnosed with T2DM. Clinical
decision support systems informed by such models will lead to improved patient care,
thereby improving overall health care.

2.5. Quantifying the effect of Intervention
Interventions are often drug therapies or surgeries, but can also include recommenda-
tions for life style changes and/or patient education. Choosing the optimal treatment
for a patient requires us to be able to estimate the effect of the possible interventions.
Specialized data mining methods such as uplift modeling or statistical techniques in
combination with causal analysis can be used to quantify the effects of interventions.

The longitudinal aspect of EHRs provides an opportunity to analyze the effects of
intervention for longer period of time across larger cohorts. It also provides clinicians
with a platform to analyze whether the interventions have any accompanying adverse
effects. Moreover, EHRs provide a platform to analyze whether interventions vary
across cohorts based on demographics attributes such as gender, age, ethnic make-up,
socio-economic status, etc.
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2.6. Constructing Evidence Based Guidelines
Once the effect of a treatment has been proven in practice, this knowledge can be
codified into and disseminated as clinical practice guidelines. Evidence-based clinical
practice guidelines are considered the cornerstone of modern medicine, and they give
guidance on the optimal treatment under a particular set of conditions based on
epidemiological evidence. Guidelines are traditionally expert-crafted, however the
increasing role of computerized clinical decision support allows for more accurate
but complex guidelines, suggesting that data mining technologies will play a more
significant role in guideline construction.

Clinical guidelines are systematically developed descriptive tools or standardized
specifications for care to assist practitioner and patient decisions about appropriate
health care for specific clinical circumstances [Field et al. 1992]. Evidence based guide-
lines (EBG) try to guide decision making by identifying best clinical practices,that
are meant to improve the quality of patient care [Barretto et al. 2003]. They help
clinicians make sound decisions by presenting up to date information about best
practices for treating patients in a particular medical state including expected out-
comes and recommended follow up interval. For example, EBG guidelines for diabetes
consist of rules such as symptom identification checks (e.g. diagnosis of T2DM when
fasting plasma glucose is greater than 7), lifestyle modification recommendations (e.g.
cessation of smoking), medication order (e.g. prescription of metformin), etc. These
guidelines are often regarded as the cornerstone of modern healthcare management.

2.7. Adverse Event Detection
While interventions typically help patients, occasionally they can lead to unforeseen
events that adversely affect patient health such as surgical site infection or the
unexpected reaction of multiple drugs. Predictive modeling have tremendous potential
for both detecting and to predicting such adverse events.

Adverse event detection refers to the problem of detecting any untoward medical
occurrence caused by mismanagement of patient health. Such medical errors might
arise due to accidental surgical practices,drug reactions or the use of outdated medical
guidelines. Identification of such events are not only important to the patient (medical
health), but also to the healthcare provider (in terms of cost reduction). Moreover,
analysis of such events might lead to the review of antiquated guidelines, withdrawal
of certain drugs (those causing adverse events) from the market, etc. We categorize the
research associated with adverse events into two major areas i.e. pharmacovigilance
and patient monitoring.

Patient Monitoring Surveillance is the continuous monitoring of patients by using
diverse information such as biochemical markers (e.g. glucose, hemoglobin A1C and
blood urea nitrogen), voice analysis, physiological variables (e.g. heart rate, breath-
ing rate, heart rate variability and sleeping alterations) and behavioral data (e.g.
stress related hormones and activity recognition). Round the clock monitoring helps
clinicians explore and understand the causal factors responsible for adverse events.
Such surveillance helps analyze large patient cohorts with limited clinical support,
patient health management during critical times (depressive and maniac episodes),
etc. Surveillance techniques are frequently used for patients admitted to the ICU.
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3. NATURE OF EHR DATA
One motivation behind the federal mandate for EHRs was to document patients’ state
of health over time and the therapeutic interventions to which these patients were
subjected. EHRs store this information in structured (databases), semi-structured
(flow sheets) and unstructured formats (clinical notes). The format of the information
greatly affects the ease of access and quality of the data, and thus has substantial
impact on the downstream data mining.

3.1. Structured Data
From the viewpoint of healthcare analytics, retrieving structured data is the most
straightforward. Structured data is stored in database tables with a fixed schema
designed by the EHR vendor. The most commonly used information, such as demo-
graphic information (e.g. birth date, race, ethnicity), encounters (e.g. admission and
discharge data), diagnosis codes (historic and current), procedure codes, laboratory
results, medications, allergies, social information (e.g. tobacco usage) and some vital
signs (blood pressure, pulse, weight, height) are all stored in structured tables.
This kind of information is common across providers and not specific to any clinical
specialty. Thus the use and format of this information is well handled by the EHR
vendors. This allows such information to be stored in structured data tables with
apriori defined layouts (schema). Fixed schemas enable high performance (rapid
access to data) and standardization: the schemas for these tables are very similar if
not identical across installations by the same EHR vendor, requiring very little (if any)
site-specific knowledge from users. This quasi-standardization of fields also greatly
helps information retrieval for analytic purposes.

Storing all information in EHRs as structured elements, however, is impractical: it
would require anticipation of all possible data elements (e.g. metrics whose usefulness
we do not yet appreciate) and would result in a level of complexity that would render
the EHR system unusable. However, there is a need for storing information that
does not readily fit into the admittedly rigid schema of the structured tables. For
example, clinicians often write notes about patient’s symptoms based on their previous
experiences, which is hard to standardize a priori.

3.2. Unstructured Data
Among the three formats, clinical notes (unstructured data) offer maximal flexibility.
Clinical notes mostly store narrative data (free text). Many types of clinical notes
are in existence,and the type of note (e.g. radiology report, surgical note, discharge
notes) is the only limiting factor on the type and breadth of information the note
in question can store. Information regarding a patient’s medical history (diseases
as well as interventions), familial history of diseases, environmental exposures and
lifestyle data all reside in clinical notes. Natural language processing (NLP) tools and
techniques have been widely used to extract knowledge from EHR data.

Clinical notes such as admission, treatment and discharge summaries store
valuable medical information about the patient, but these clinical notes are very
subjective to the doctor or the nurse writing them, and lack a common structure
or framework. These clinical notes an also have grammatical errors, short phrases,
abbreviations, local dialects and misspelled words. Considerable data processing
needs to be conducted on these clinical notes such as spelling correction, word sense
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disambiguation, contextual feature detection, extraction of ICD codes from clinical
text, and adverse events surveillance. This makes deriving structured information
about patient phenotypes from clinical notes a computationally challenging task that
requires the most sophisticated NLP tools and techniques. In the past, work has
been done to analyze the effect of time constraints on routine clinical tasks such as
review of ambulatory EHR clinical notes [Farri et al. 2012], creation of clinical sense
inventory of clinical abbreviations and acronyms [Moon et al. 2014] and development
of tailored NLP methods to extract information from operative notes [Wang et al.
2012].

3.3. Flowsheets
In between the two extremes (structured tables and unstructured clinical notes) lies
the (semi-structured) flow sheet format [Weed 1968]. This format is most reminiscent
of resource description files (RDF), consisting of name, value and time stamp triplets.
Typically, the “name” field stores the name of the measure and the “value” field
contains the actual measurements: e.g. the name is “arterial blood pressure” and the
value is 145 Hgmm. This format is more flexible than the structured tables, since the
user can define new metric through the name field; the set of metrics is not restricted
to those anticipated by the EHR vendor. Flow sheets are similar to structured data in
the sense that the value field is either a quantitative measure (e.g. blood pressure) or
typically a restricted set of values. For instance, the American Society of Anesthesiolo-
gists (ASA) physical status takes values of “healthy”, “mild systemic disease”, “severe
systemic disease”, “severe life-threatening systemic disease”, or “moribund”.

Flow sheets offer expandability to EHR systems and thus have found numerous
uses, becoming the only or most convenient data repository for many applications.
Possibly the most important use for flow sheets is that they provide detailed infor-
mation about specialty care. For example, information related to a patient’s asthma
care plans can be stored in flow sheets or they may store various diabetes-related
non-standard (or not-yet-standard) metrics for a diabetes clinic. In addition, they
may provide additional details regarding how a particular measure was obtained
(blood pressure taken while the patient was lying flat) and can also be used to store
automated sensor data (e.g. pulse and blood oxygen levels every few minutes in
an intensive care unit). Further, flow sheets can be used to pull together related
measurements such as quality indicators.

4. DATA-RELATED CHALLENGES
EHR data as a research platform poses numerous challenges. Many of those chal-
lenges are also frequently encountered in other areas: noise, high dimensionality,
sparseness, non-linear relationships, complicated dependencies between variables,
and extraction of higher level features from low level information. Less frequent, but
still not uncommon elsewhere, are issues related to data integration across multiple
sites (medical providers) and / or multiple types of data sets (e.g. clinical vs. claim
data). As in other domains, it is also important to incorporate domain knowledge,
including knowledge about the relationships. For example, the blood pressure of a
patient on medication for hypertension needs to be interpreted in that context.

However, the single most important challenge, the one that arguably impacts data
mining methodologies at the most, is missing data, and this will be the focus of our
discussion in the rest of this section. EHR data can be missing for a wide variety of
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reasons. First, as we have discussed earlier, it is study designs that transform raw
EHR data into a design matrix,a matrix that is amenable to the application of data
mining techniques. Each study design defines a study period, a time period during
which the patient is under observation. Events that take place outside the study
period are unobservable and data that is unobservable because it falls outside the
study period is referred to as censoring.

Even during the study period, patients’ health state is not always observable. The
US health-care system allows patients to seek medical care from multiple providers
who are not required to exchange health information. Fragmentation refers to the
situation when a patient’s trajectory is only partially observable during the study
period, because the patient increased risk of outcome sought care at a different
provider who did not share data with those conducting the study. Naturally, all
diagnoses, tests and treatments received at the other provider are unobservable. This
is known as fragmentation.

Missing data can still arise when the patient receives un-fragmented care from a
single provider, simply because the patient receives care intermittently. During every
patient care encounter, providers focus on a limited set of ailments,and hence update
only a small fraction of the patient’s record. The irregular nature of the visits and the
small fraction of the record that gets updated during any visit leave a large portion
of the record unobserved for extended periods of time unobserved or in other words,
missing. We refer to this as irregular data.

Even during a single encounter, not all information about the patient gets recorded.
EHRs are notoriously lacking in terms of documenting socio-economic data, envi-
ronmental exposures and lifestyle descriptors. Unobserved descriptors and lack of
knowledge about disease processes can lead to biases and confounding. It is not only
”soft” socio-economomic and lifetime data that could be missing; ”hard” medical facts,
such as diagnosis codes, could also be missing. Indeed, the recording of diagnosis codes
is often dictated by reimbursement rules.

In the following subsections, we will discuss these various issues in details.

4.1. Censored Data
By censored data, we refer to data for which information about a patient’s medical
state is observed only during a certain period of time or conversely, when potentially
interesting events fall outside the observation period and are hence unobservable. In
case of left censored data, patients experienced events of interest prior to the start of
the study; in case of right censoring, potentially interesting events are unobservable
because they happened to the patient after the study concluded. In case of interval
censored data, information is only available of the data being within a certain limit.
Studies can be either left, right or interval censored. Censoring can lead to loss of
crucial information about the patient’s health. For example, for the right censored
patient,there is neither an easy way to determine whether the patient is alive or dead
nor to measure the efficacy of the treatment the patient was undergoing. Examples
of datasets with censoring are T2DM [Frydman 1995], dementia [Joly et al. 2002],
nepropathy [Andersen 1988] and mortality [Andersen 1988].

Survival modeling techniques analyze data where the outcome variable is the time
until the occurrence of an event of interest are frequently used to model censored
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data. Example of such techniques are nonparametric estimation methods such as
Kaplan Meier curve [Kaplan and Meier 1958], bayesian non-parametric methods
[Kaplan and Meier 1958] which involves prior belief about the shape of the survival
function, semi parametric proportional hazards regression with fixed covariates or
time dependent covariates [Wei et al. 1989], additive hazards regression model and
parametric regression models using weibull distribution or log logistic distribution
[Cox 1972].

4.2. Fragmentation
Fragmentation is a lack of data sharing across providers. Fragmentation typically
occurs when patients visit multiple healthcare providers seeking specialty care,
expert advice or second opinions. In such scenarios, all healthcare provider involved
only have partial information about the patient’s medical history. Integrating data
across multiple healthcare providers has several limitations. These challenges arise
as different EHR systems such as General Electic (GE) or Epic, require a common
language to transfer information into HL-7 (common protocol), which cannot capture
all nuances. Even when multiple sites use the same EHR, their treatment policies
may differ, flowsheets may differ and thus their definitions of nuanced concepts may
differ. For example, fasting and random glucose measurements are not distinguished
by lab codes and different sites can apply different methods to distinguish the two.

4.3. Irregular Time Series Data
Beside our inability to make observations before the study period starts or after it
concludes, the most striking characteristic of the EHRs data is the irregularity of
the patient visits. While recommended frequency of visits may exist, few patients
actually follow these recommendations. For example, as per the ADA guideline A1C
test must be performed at least two times a year for individuals who are meeting
treatment targets and have stable glycemic control. On the contrary, an A1C test
must be performed quarterly for individuals whose therapy has changed or who are
not meeting glycemic targets.

Further, information such as vitals is collected at every visit, certain laboratories
tests are ordered annually, and other tests are performed only as needed. For example,
as per the ADA guidelines, a laboratory test to measure Hemoglobin A1C in blood
is recommended every six to twelve months, but a bacterial panel is ordered only
when needed. This difference in the frequency of collection of medical information
leads to irregular longitudinal data. This difference in information being captured
from roughly every year to every few hours, leads to the problem of multiple temporal
scales. Care must be taken to compare the trajectories of different health indicators, as
they might have varying temporal scales. This irregular time gap between visits can
be further complicated as patients often have different diseases with accompanying
complications.

Analyzing regular time series is a well-studied problem in data mining, but applica-
tion of these techniques to EHR-type irregular time series is very challenging.

4.4. Other Sources of Missing Data
Diagnosis codes might also be missing due to intentional omission as diagnosis
codes, especially billing codes, are related to reimbursement. Different problems,
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comorbidities or complications have different reimbursement rates: depending upon
the complications, the same procedure may have different costs and thus result in
increased or decreased reimbursements. Due to these financial constraints, only some
of the problems related to the primary cause of the visit, are used to generate billing
codes (ICD codes are used to represent these problems in billing records). This leads
to biases in ICD-9 codes, as the billing codes might not be a true representation of the
actual medical state of the patient.

Diagnosis codes can also be missing due to changes in disease definitions and
updates to the ICD-9 codes. For example, pre-diabetes did not have a corresponding
ICD-9 code until 2000. The introduction of new and the periodic updates to existing
ICD codes leads to further complications such as lack of a clear mapping from the old
revision to the new and subsequently, to inconsistent research findings.

Another largely unobservable source of missing information lies in patient con-
formance with prescriptions and other physician advice,such as lifestyle change
recommendations. The orders table in an EHR indicates that the physician prescribed
a medication, but in most cases we do not know whether the patient actually took the
medication. This situation is referred to as Intent to Treat. In the case of the lifestyle
change, we may not even have documentation that the patient received this advice.

A unique aspect of missing data in clinical analytics is that whether the data is
missing or not can be predictive. When a physician orders a test, he usually suspects
that the patient may suffer from the corresponding condition. Conversely, by not
ordering certain tests, the clinician suggests that corresponding medical conditions
are absent. For example, no bacterial panel being ordered likely indicates that the
patient is not suffering from any infection.

4.5. Biases and Confounding Effects
Studies performed using EHRs often have biases and confounding effects [Moher et al.
1998; Schulz et al. 1995]. Biases might arise due to multiple reasons. For example, in
a cohort study,there might be significant differences in baseline characteristics (age,
gender, race, ethnicity) between the cases and the controls [Gruber 1986; Burkman
1981; Nordin 1977; Seltzer et al. 1974]. In such cases, any observed difference
between the groups after a follow-up period might be due to the difference in baseline
characteristics and not due to the exposure. Therefore in such cases, analyzing the
real effect of exposure might be difficult.

Such bias can be overcome by finding the right control group. One possible way is to
randomly select subjects from a pool of patients such that the pool does not comprise
of patients diagnosed with the outcome [Wacholder et al. 1992]. In other approaches,
controls can be drawn from neighborhood of the cases as such controls would be very
similar in terms of socio-economic status and lifestyle choices [Vernick et al. 1984;
JACQUELINE et al. 1989]. Similarly, when genetic factors are the main focus of
study,controls could often be chosen from family and relatives as they share similar
genetic make-up [Wacholder et al. 1992].

Confounding is another issue which might undermine the internal validity of any
study [Abramson and Abramson 2001; Walline 2001]. Such situation arises when a
variable (i.e. confounder) is associated with the exposure and affects the outcome, but
the confounder variable is not an intermediate link in the chain of causation between
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exposure and outcome [Ory 1977; Schwingl et al. 1999; Jain 1976]. For example,
studies have often reported a high degree of association between risk of myocardial
infarction and oral contraceptives. However, it was later observed that this association
was spurious because of the high proportion of tobacco users among users of birth
control pills. Therefore tobacco consumption confounded the relation between oral
contraceptives and myocardial infarction.

Multiple ways to overcome confounding effects have been proposed. The simplest
strategy is to restrict or exclude subjects which might lead to confounding effects
[Walline 2001]. For example, if there are few subjects who consume tobacco, then it
would help to remove these subjects from the study. Similarly, pairwise matching
[Walline 2001] and stratification [Mantel and Haenszel 1959] are also techniques
used to avoid confounders. However, the techniques used until now are mostly used to
avoid confounding arise due to single variable effects. To handle multiple confounding
variables, multivariate modeling techniques can be used [Lang and Secic 2006]. For
example, survival modeling techniques such as Cox proportional hazards regression
can be used to model time to death. Such methods might control simultaneously for
age, blood pressure readings, smoking history and various other risk factors.

5. METRICS
Quantifying the outcome is the primary interest in many research studies. The
outcome is often quantified using various metrics such as incidence rate, prevalence,
relative risk and odds ratio [Hennekens et al. 1987; Last et al. 2001; Sackett et al.
1996; Sterne and Smith 2001]. Incidence rate [Last et al. 2001] indicates the number
of new cases of disease in a population at risk over a predefined interval of time.
Prevalence indicates the number of existing cases of disease in a population under
observation. For example, in a given population of 100,000 persons, there are 980
patients who were diagnosed with tuberculosis within a year and there were 10
patients diagnosed with tuberculosis at a particular point in time. In this scenario,
the incidence rate of tuberculosis within a year would be 10/100000 whereas the
prevalence rate would be 980/100000.

Relative risk [Last et al. 2001] is defined as the frequency of outcome in the exposed
group as compared to the frequency of outcome in the unexposed group. For example,
consider a cohort of pre-diabetic patients. The cohort is divided into two groups (con-
trol and treatment) of 1000 patients each. The treatment group is prescribed statin
and the control group is not. The cohort is then followed for 5 years. After 5 years, it
was observed that 200 patients in the treatment group progressed to diabetes whereas
100 patients in the control group progressed to diabetes. From this information, the
relative risk of diabetes is 2.0: patients within cases are twice as likely to progress
to diabetes as controls. Relative risk is 1.0 when the frequency of outcome is same in
both the groups. Relative risk greater than 1.0 indicates increased risk of outcome,
while less than 1.0 indicates decreased risk (protective effect of exposure).

Odds ratio [Sackett et al. 1996] indicates the odds of exposure/outcome among
the case group divided by the odds of the exposure/outcome among controls. For the
example above,the odds in the case group will be 0.25 whereas the odds in the control
would be 0.10. The odds ratio would then be 25. Similarly, odds ratio can also be
defined for cross-sectional, cohort and randomized controlled studies. In the following
section, we describe various study designs and metrics which are widely used in
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respective study designs.

6. STUDY DESIGN
EHR data is mere collection of database tables that need to be transformed into
an analysis matrix that is amenable to data mining in a manner that allows us
to answer the question we set out to study. Suppose we wish to construct a risk
prediction model that can predict the 5-year risk of a particular disease D for any
patient. To construct such a model, we would take a cross section of the patient
population in year Y , allowing us to have a representative sample from which this
“any patient” may come from. Y is ideally at least 5 years before the last date in
the EHR, so that we have sufficient (5-year) follow-up for many patients. Next, we
reconstruct all patients’ state of health in year Y , collecting their medical history
before Y ; and then follow them five years forward (until year Y + 5) and establish
their outcomes, namely whether they developed D. The analysis matrix would
have patients as its rows and patient characteristics in year Y as columns; and
would have an outcome for D, as well. Traditional predictive modeling techniques
are directly applicable to such a matrix for carrying out various research related tasks.

The way we transformed that EHR data follows a particular study design that
allows us to answer our question. Each study question can require a different study
design. In this section, we review some of the most commonly used study designs and
the questions they allows us to answer. For additional details, the interested reader is
referred to [Grimes and Schulz 2002].

Study designs form a hierarchy which is depicted in Figure 1. Accordingly, study
designs can be primarily classified into two major groups i.e. experimental and
observational.

In an experimental study design, the researcher intervenes to change the course
of the disease and then observes the resultant outcome. Randomized Clinical Trials
(RCT’s) are examples of experimental study designs. A specific example would be a
study where surgery patients with T2DM were randomized to receive supplemental
insulin at bedtime for blood glucose (treatment) or no supplemental insulin (case). As
intervention in EHRs is not possible, we will not discuss these study designs in great
detail.

By observational [Funai et al. 2001], we refer to study designs where the re-
searchers do not intervene. In such studies, the investigators observe subjects and
measure variables of interest without assigning treatments to the subjects. The
treatment that each subject receives is beyond the control of the investigator. For
example, consider a study that investigates the effect of smoking(exposure) on lung
capacity (outcome). A cohort of young men aged 18-25 are recruited. Some subjects
in this cohort smoke tobacco (exposed group) and some do not (exposed/comparison
group). The investigator has no ability to influence the exposure since the subjects
smoking behavior is uninfluenced by the investigator. This cohort is then followed for
a number of years to analyze the effect of smoking on lung capacity by comparing
the exposed group with the unexposed group [Kelsey 1996; Rothman and Greenland
1986]. Observational studies can be further categorized as analytical (if there is a
comparison group (i.e. case and control)) or descriptive (no comparison group).
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Fig. 1. Study Design Classification

Analytical studies are mostly used to test hypotheses by selection and comparison
of groups. They also aim to identify risk and protective factors for diseases as well
as causative associations between exposures and outcomes. Analytical studies [Last
et al. 2001] can be further divided into three major groups based on the temporal
direction in the study. Studies which start with an outcome and look back in time for
exposure are known as retrospective studies. If the study begins with an exposure
and concludes with an outcome, we refer to them as cohort studies [Doll et al. 2000;
Hannaford and Kay 1998; Kim et al. 2000; Huang et al. 1999]. It involves following
subjects over time to analyze the effect of exposure. If we only consider a single point
in time, where the outcome and the exposure are both present at that time, we refer
to the study as cross-sectional [Last et al. 2001]. Such studies mostly involve the
selection of a sample of the population, irrespective of the outcome and the exposure.
Alternatively, these studies might represent a snap-shot of the underlying patient
population.

Descriptive study designs mostly deal with the frequency and the distribution of
risk factors in populations and enable us to assess the extent of a disease of interest.
These study designs are usually used to build hypotheses, thereby building the
framework for future clinical research.

In the following section, we will discuss the aforementioned study-designs along
with clinically relevant examples. We will also discuss how certain studies might

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: April 2016.



1:16 Yadav et al.

incorporate biases and confounding factors.

6.1. Retrospective Studies
Retrospective studies are study designs which look backwards, i.e., the study groups
are defined using an outcome and the study looks back in time to analyze the exposure
status of a subject. They are often used to identify risk factors that may contribute
to a medical condition by comparing subjects who have that condition/disease with
patients who do not have the condition/disease but are otherwise similar [Torrey et al.
2000; XU et al. 2011; Osaki and Minowa 2001; Avidan et al. 2001].

These study designs are very useful in the investigation of diseases that have a long
latency period, such as cancer and T2DM as cohort studies (discussed next) involve
many years of follow-up before the outcome becomes apparent. Since such studies
have treatment and control identified right at the beginning of the study, they are
very efficient in terms of time and effort.

However, when the exposure rate is low these study designs are inefficient as
researchers would have to examine many cases and controls to find one patient who
had exposure. For example using a case-control study design to investigate the effect
of pancreatic cancer (exposure) on T2DM (outcome) would be impractical because
the exposure is very rare. When the exposure rate is low, cohort studies should be
the default standard. Moreover, choosing a control group and obtaining exposure
history might greatly affect a study’s vulnerability to bias. Improper selection of the
control group can also bias the results of the study and therefore researchers should
provide clear eligibility criteria for the outcome being studied, such as age, gender,
racial makeup and ethnicity. These studies often come under the realm of temporal
supervised learning techniques.

In risk prediction, case control study designs are widely used due to their ability to
expose the association between risk factors (exposure) and outcome. Consider for ex-
ample a cohort of diabetic patients (case) and non-diabetic patients (control). We track
these patients backwards in time for a fixed number of years (i.e. baseline) to explore
the exposure. At baseline, we investigate whether the patients in the case and the con-
trols were obese (exposure). Using the patients’ baseline characteristics as exposures
we can determine the patients’ odds of progressing to T2DM if the patient is obese.
Since we followed the patients from outcome to exposure,we can estimate the odds
ratio i.e. the proportion of individuals exposed in each of the case and the control group.

6.2. Cohort Studies
Cohort studies are also known as incidence, longitudinal,forward-looking, follow-up,
concurrent or prospective studies [Lilienfeld and Stolley 1994]. In such studies we
compare the experience of a group exposed to some intervention with another group
not exposed to the same intervention. The underlying characteristic of such studies is
that they track people forward in time from exposure to outcome [Beral et al. 1999;
Seman et al. 1999; Colditz et al. 1996]. As an illustration, consider a group of patients,
some diagnosed with obesity at a particular point in time. Our interest is to investigate
the relationship between obesity and diabetes. This population contains patients with
exposure (i.e. obese patients), outcome (diabetes) and both (obese diabetic patients).
We then exclude all diabetic patients and only retain patients without diabetes; this
is our study cohort. Some of patients in the cohort have the exposure (obese) and
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others do not. We follow the cohort forward in time and observe how many patients
convert to diabetes (cases) and how many remain non-diabetic (controls) both among
the exposed and among the unexposed patients. This design ensures that exposure
precedes outcome thus it allows us to estimate incident rates and the relative risk (or
odds) of incident diabetes.

Cohort studies are considered to be the best study designs for ascertaining both
the incidence and natural history of a disorder as the temporal sequence between
the cause and the outcome is usually clear [Walline 2001]. They are also useful in
analyzing multiple outcomes that might arise after a single exposure. For example,
smoking (i.e. exposure) might lead to multiple outcomes such as stroke, oral cancer
and heart disease. They are often utilized to explore rare disease phenomenon. For
example, to investigate the effects of ionizing radiation in the workplace, subjects
might be selected from factories or hospitals thereby avoiding the ethical issues
arising due to exposure assignment.

However, such study designs come with certain caveats. Firstly, selection bias is in-
herent in such cohort studies [Sackett 1979]. For example, in a cohort study analyzing
effects of smoking on T2DM, those who smoke would differ in other important ways
(lifestyle) from those who do not smoke. In order to validate the effect of exposure
(i.e. smoking), both the (case and controls) must be similar in all respects except for
the absence/presence of exposure and the outcomes. Secondly, loss of subjects due
to censoring can be a difficulty, even when the study is short, but particularly with
longitudinal studies that continue for decades. For example, progression from T2DM
to associated complications such as Peripheral Vascular Disease (PVD) and Ischemic
Heart Disease (IHD) takes around 5 to 10 years, and subjects may drop out over this
long period.

In risk prediction, cohort study designs are widely used due to their ability to
expose the association between risk factors (exposure) and outcome. Consider for
example a cohort of pre-diabetic patients, many of whom have different conditions
diabetes (e.g. obesity, high cholesterol, high blood pressure) comorbid with T2DM
at baseline. We follow this cohort for a number of years. Some of the patients
progress to overt diabetes (case) and others remain non-diabetic until the end of
the study (control). Some patients are lost to follow-up before the end of the study
(censored). Now, we can consider the patients’ baseline characteristics (e.g. obesity,
high cholesterol or high blood pressure) as exposures and determine which of these
exposures increase (or decrease) the patients’ risk of developing diabetes significantly.
Beside risk prediction, this application also relates to biomarker (risk factor) discovery.

Cohort design can also be valuable for subpopulation mining. In the above example,
we can examine the effect of simultaneously being obese, having high cholesterol and
high blood pressure at baseline on incident diabetes. The set of conditions (obesity,
high cholesterol and high blood pressure) define a subpopulation which we can
consider as an exposure. Thus the cohort design can be used for subpopulation mining.

6.3. Cross-Section Studies
Cross-sectional studies fall under the category of analytical studies,which are charac-
terized by seeking a comparison between cases and controls by collecting data at one
specific point in time - that is the cross-sectional data [Lee 1994]. Such study designs
differ from retrospective and cohort studies in that they aim to make inferences based
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on data that is collected only once rather than collected multiple times [Mann 2003].

Cross sectional studies are frequently used to analyze the presence or absence of
a disease and outcome at a particular point of time across the case and the control
group. They are mostly used to investigate the association between the risk factor and
the outcome [Johnson and Hall 1988; Andersen et al. 2006; Coffey et al. 1992]. Due
to this, metrics such as prevalence are widely used in these study designs [Lee 1994].
For example, researchers might measure and compare the cholesterol levels of two
age groups - over 40 and under 40 for joggers, and compare these to cholesterol levels
among non-joggers in the same age groups. Researchers might even create subgroups
for gender. Thus cross-sectional study designs allow researchers to compare many
different variables simultaneously.

Some patients in the population at the time of the study will have the exposure,
some will have the outcome and others will have both [Levin 2006]. Since it is a single
point in time, the temporal relationship between exposure and outcome cannot be
determined. From the proportions of patients with exposure, outcome and both, we
can estimate the relative odds of outcome given exposure. We can also estimate the
prevalence of outcome but not the incidence rate of outcome. To illustrate, in our last
example, we cannot know for sure if our joggers had low cholesterol levels before
taking up their exercise regimes, or if the behavior of daily jogging helped reduce
cholesterol levels that had previously been high. Similarly, we would not compare past
or future cholesterol levels for both the groups, for these would fall outside the frame.
We would look only at cholesterol levels at one point in time.

In risk prediction, cross-sectional study designs are widely used due to their ability
to expose the association between risk factors (exposure) and outcome using data
at a single point in time. Consider our old cohort of prediabetic patients, many of
whom have different conditions (e.g. obesity, high cholesterol, high blood pressure)
at baseline. Some of the patients might have obesity (case) while others are healthy
(control). Now, we can compare the groups for other outcomes of interest (e.g. high
cholesterol or high blood pressure) with respect to our exposure (obesity).

6.4. Descriptive Studies
Descriptive studies are designed to describe the existing distribution of variables,
without regard to causal or other hypotheses [Walline 2001; Hennekens et al. 1987].
In such studies, apart from age and gender, other characteristics such as race,
occupation and recreational activities are often described[Gabert and Stueland 1993;
Krane et al. 1988; Jaremin et al. 1996; Marshall et al. 1997; Giordano et al. 2002;
Weiss et al. 2005; Anderson et al. 1991]. Descriptive studies are often classified into
multiple categories based on whether they deal with individuals or populations. For
example, studies reporting an unusual disease or association or surveillance studies
over a community are examples of descriptive studies based on individuals. Examples
of descriptive studies based on populations can be correlational studies looking for
associations between exposures and outcomes. Correlational studies often lead to
hypotheses for more advanced study designs. These studies often come under the
realm of non-temporal unsupervised learning techniques. The defining characteristic
is that there are no cases or controls as compared to cohort, cross-sectional and
case-control studies and hence no comparisons.
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Descriptive studies are often useful for analyzing the medical state of population
and health-care planning [Tough et al. 2000; Bider et al. 1999; Dunn and Macfarlane
1996; Steegers-Theunissen et al. 1998]. For example, such study designs are widely
used to investigate the tobacco consumption within a population, age group, gender or
socio-economic class.

Such study designs do not provide us with the platform to carry out temporal
reasoning and causal research. Since there are no comparison groups,no inference can
be derived from the cases and the controls.

In comorbidity analysis, descriptive study designs are widely used due to their
ability to expose the distribution of diseases within any population of interest. For
example, consider our cohort of prediabetic patients, many of whom have different
conditions (e.g. obesity, high cholesterol, high blood pressure) at baseline. Using such
study designs, we can estimate the prevalence of these comorbid conditions. Further
such analysis can lead to future estimation of sequential patterns in which such
diseases occur.

7. APPROACHES
Having defined some metrics of interest in Section 5, and having selected a study
design from Section 6, to transform our EHR data into an analytics matrix that data
mining methods can operate on, we appear ready to answer the clinical question
we set out to solve. While the data format may suggest that we can directly apply
our existing data mining techniques, the data itself creates some challenges, which
we described in Section 4 in detail. Addressing these challenges require analytical
approaches that have not been handled by traditional data mining challenges. Most
notably, we describe approaches for addressing censoring, the irregular temporal
nature of the data and biases and confounding.

Approaches are concepts and ideas that provide high-level solutions to these
challenges. Within these high-level solutions, concrete data mining techniques
can be developed. Our focus in this section is to describe these high-level ideas;
later, partly in this section as illustrative examples, but mostly in the subsequent
sections, we will discuss some concrete analytics techniques that use these approaches.

Chung et al. [Chung et al. 1991] provided a survey of statistical methods to analyze
the length of time until an event of interest occurs. Such modes have been widely used
to analyze the survival times (i.e. time until death) of medical patients, analyze the
time until recidivism and many other applications. In their paper, they summarized
the statistical literature on survival analysis. Kleing et al. [Klein and Moeschberger
2005] provides a comprehensive overview of various techniques used to handle sur-
vival and censored data. In their book, they discuss the various sources where sur-
vival/censored data is generated and provides multiple examples in medical settings.
They then discuss various quantities and models of interest such as the survival func-
tion and the hazard function, sampling schemes for censored data. They conclude
the book, by discussing several advanced topics such as estimating the hazard func-
tion, excess mortality, bayesian non-parametric techniques, gamma-frailty models and
other techniques for univariate and multivariate methods. Dahejia et al. [Dehejia and
Wahba 2002] discussed causal inference and sample selection bias in non experimental
settings. In their paper, they discussed the use of propensity score-matching methods
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for non-causal studies and discussed several methods by implementing them using
data from the National Supported Work experiment.

7.1. Handling Censored Data
Censoring occurs when a patient’s trajectory is only partially observable. For ex-
ample, suppose a study is conducted to measure the impact of a diabetes related
drug on mortality rate. In such a study, let us assume that the individual withdrew
from the study after following the study course for limited duration. In such a
scenario, information about patient’s vital statistics is only available until the patient
was censored. Such data is common in domains such as healthcare and actuarial work.

Survival analysis is an area of statistics that deals with censored data,such as
death in biological organisms or failure in mechanical systems. These approaches
usually aim to answer questions such as the following: what is the proportion of a
population that will survive past a certain time? How do particular circumstances
or characteristics increase or decrease the probability of survival? To answer, the
aforementioned clinical questions, techniques are required which can handle censor-
ing, which is frequently present in EHRs. Techniques to handle censored data, can
be divided into three major categories: non-parametric, semi-parametric or parametric.

Non-parametric techniques do not rely on assumptions about the shape or pa-
rameters of the distribution of time to event. Examples of such techniques include
Kaplan-Meier estimators [Kaplan and Meier 1958] and Nelson- Aalen estimators [Cox
1992]. Rihal et al. [Rihal et al. 2002] used Kaplan-Meir estimators for incidence and
prognostic implications of acute renal failure in patients undergoing percutaneous
coronary intervention (PCI). Dormandy et al. [Dormandy et al. 2005] used Kaplan-
Meier estimates in their analysis of patients who were diagnosed with T2DM and
were at high risk of data and non-fatal myocardial infarction and stroke. Rossing et
al. [Rossing et al. 1996] used Nelson-Aalen estimators for analyzing the predictors of
mortality in insulin dependent diabetes. Ekinci et al. [Ekinci et al. 2011] used such
non-parametric techniques for exploring salt intake consumption and mortality in
patients with diagnosed with T2DM.

Parametric techniques often rely on assumptions about the shape or parameters
of the distribution of time to event. Examples of such technique are the accelerated
failure time model. Accelerated failure time models (AFT models) [Keiding et al. 1997]
are an alternative to the commonly used proportional hazards models. Whereas a
proportional hazards model assumes that the effect of a covariate is to multiply the
hazard by some constant, an AFT model assumes that the effect of a covariate is
to accelerate or decelerate the life course of a disease by some constant. Babuin et
al. [Babuin et al. 2008] determined whether troponin elevations predict in-hospital,
short-term, and long-term mortality in medical intensive care unit patients inde-
pendent of the severity of the underlying disease as measured by the APACHE
prognostic system. Wilson et al. used [Wilson et al. 2008] used AFT models to predict
cardiovascular risk by using predictors such as age, gender, cholesterol, high-density
lipoprotein cholesterol, diabetes mellitus (DM), systolic blood pressure, smoking
status and body mass index (BMI).

Semi-parametric techniques have both parametric and nonparametric components.
An example of such a technique is the proportional hazards model. Proportional
hazards models relate the time that passes before some event occurs to one or more
covariates that may be associated with that quantity of time. In such models, the
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unique effect of a unit increase in a covariate is multiplicative with respect to the
hazard rate. Yadav et al. [Yadav et al. 2015] used proportional hazards model for risk
assessment of comorbid conditions in T2DM. They identified how risks vary across
trajectories for the same outcome. The trajectories were defined by using diagnosis
codes such as hypertension, hyperlipidemia and T2DM with time to death being
modeled as the outcome of interest. Martingale residuals were used to compute the
risks. Vinzamury and Reddy [Vinzamuri et al. 2014] extended proportional hazards
regression with novel regularization functions to capture correlation and grouping of
features effectively. They proposed novel regularization frameworks to handle correla-
tion and sparsity present in EHR data. Further, they demonstrated the applicability
of their technique by identifying clinically relevant variables related to heart failure
readmission.

7.2. Handling Irregular Time Series Data
Data stored in EHRs is usually collected through longitudinal study. In such studies,
the subject outcomes,treatments or exposures are collected at multiple follow-up
times, usually at irregular intervals. For example, patients diagnosed with T2DM
might be followed over time and annual measures such as Hemoglobin A1c and GFR
are collected to characterize the disease burden and health status, respectively. As
these repeated measures are correlated within the subject, they require sophisticated
analysis techniques. In what follows, we describe techniques that are widely used to
handle these repeated measurements. In particular, we cover marginal and condi-
tional models, respectively. These models handle unevenly spaced (irregular) EHRs
by assuming a correlation structure among multiple clinical observations of a patient
recorded at different time points.

Marginal models are also known as the population averaged model as they make
inferences about population averages. In such models, the target of inference is
usually the population and these models are used to describe the effect of covariates
on the average response. They are also used to contrast the means in sub-populations
that share common covariate values. For example, consider a cohort of pre-diabetic
patients with elevated cholesterol levels. In this cohort, if we are interested in
estimating the progression of patients to full-blown T2DM, we would probably want to
use the population-averaged coefficients. Generalized Estimating equations (GEE’s)
are mostly used for parameter estimation in marginal models. This approach is com-
putationally straightforward and with care can handle missing data, even when the
covariance has been misspecified. Generalized estimating equations (GEEs) are used
to estimate the parameters of a generalized linear model with a possible unknown
correlation between outcomes. Parameter estimates from the GEEs are consistent
even when the covariance structure is misspecified. They are commonly used in large
epidemiological studies, especially multi-site cohort studies because they can handle
many types of unmeasured dependence between outcomes.

Hernan et al. [Hernán et al. 2000] used marginal models to analyze the causal
effect of zidovudine on the survival of human immunodeficiency virus-positive men
participating in the Multicenter AIDS Cohort Study. They used a marginal structural
Cox model to control further for time-dependent confounding due to CD4 count and
other time-dependent covariates and observed a mortality ratio of 0.7. Yu et al. [Yu
et al. 2010] used marginal models to estimate the effect of medication adherence on
health outcomes among patients diagnosed with T2DM. Nandi et al. [Nandi et al.
2012] used such models to estimate the direct effect of adverse childhood social
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conditions on onset of heart disease, T2DM and stroke. King et al. [King 2012] have
discussed the use of marginal models for T2DM related research.

Conditional models [Laird and Ware 1982] are also known as the locally averaged
models as they usually make inferences about individual subjects. The estimates are
based on averaging or smoothing done by the model, but more locally, are based on
sources of dependence in estimating model parameters. For example, consider once
again our aforementioned cohort of pre-diabetic patients with elevated cholesterol
levels. In this cohort, if we are interested in estimating the effect of statin across every
individual, we would use conditional models.

Yamaoka et al. [Yamaoka and Tango 2005] used conditional models to evaluate
the efficacy of lifestyle education for preventing T2DM in individuals at high risk.
They observed that lifestyle education intervention reduced glucose levels by 0.84
mmol/l as compared to the control group. Mezuk et al. [Mezuk et al. 2008] examined
the bi-directional prospective relationships between depression and T2DM using a
random effects model. Nouwen [Nouwen et al. 2010] examined the association of
diabetes and the onset of depression by reviewing the literature and conducting a
meta-analysis of longitudinal studies on this topic. The conclusion was that patients
diagnosed with T2DM have a 24% increased risk of developing depression.

7.3. Handling Confounding
A confounding variable is an extraneous variable in a statistical model that correlates
(directly or inversely) with both the dependent variable and the independent variable.
To handle confounding we discuss techniques such as propensity scoring and inverse
probability weighing.

Statistical matching techniques such as propensity score matching (PSM) [Peikes
et al. 2008] attempt to estimate the effect of a treatment or other intervention by
accounting for the covariates that predict receiving the treatment. They aim to reduce
the bias caused by confounding variables. PSM creates a group by employing the
predicted probability of group membership which is usually obtained from logistic
regression. The key advantage of PSM is that by using a linear combination of covari-
ates for a single score, it balances treatment and control groups on a large number
of covariates without losing a large number of observations. One disadvantage of
PSM is that it only accounts for observed (and observable) covariates. Factors that
affect assignment to treatment and outcome but that cannot be observed cannot be
accounted for in the matching procedure. Another issue is that PSM requires large
samples, with substantial similarities in terms of subjects between treatment and
control groups.

Tao et al. [Tao et al. 2010] used PSM to determine that the costs attributed to type-1
diabetes are disproportionately higher than would be expected given the number of
type 1 patients compared with type 2 patients. Austin et al. [Austin 2007] provided
a systematic review of the use of propensity score matching in the cardiovascular
surgery literature. Polkinghorne et al. [Polkinghorne et al. 2004] used PSM to
analyze the inception and intervention rate of native arteriovenous fistula (AVF).
Yasunaga et al. [Yasunaga et al. 2013] investigated postoperative outcomes after
laparoscopic or open distal gastrectomy in Japan. Exact, propensity score matching
was performed to compare in-hospital mortality, postoperative complication rates,
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length of stay, total costs, and 30-day readmission rates between the groups of interest.

Short et al. [Short et al. 2011] used PSM techniques to examine the effect of
beta blockers in the management of chronic obstructive pulmonary disease (COPD),
assessing their effect on mortality, hospital admissions, and exacerbations of COPD.
They described the additive benefits of beta blockers in reducing oral corticosteroid use
and hospital admissions due to respiratory disease. Beta blockers had no deleterious
impact on lung function for any treatment step when given in conjunction with either
a long acting agonist or antimuscarinic agent. Kuss et al. [Kuss et al. 2010] used PSM
to analyze off and on-pump coronary artery bypass grafting techniques. Their review
and analysis of propensity score analyses finds off-pump surgery superior to on-pump
surgery in all of the assessed short-term outcomes. This advantage was statistically
significant and clinically relevant for most outcomes, especially for mortality.

Inverse probability weighting [Hogan and Lancaster 2004] is a statistical technique
for calculating statistics standardized to a population different from that in which
the data was collected. Instead of adjusting for the propensity score, the subjects are
usually weighted. However, there may be prohibitive factors barring researchers from
directly sampling from the target population such as cost, time or ethical concerns.
Robinson et al [Robinson et al. 2011] used inverse probability weighting for examining
whether lower serum levels of serum 25-hydroxyvitamin are associated with increased
risk of developing type 2 diabetes.

8. CLINICAL DATA MINING METHODOLOGIES
The discipline of EHR data mining stands at the intersection of epidemiology, bio-
statistics and general data mining. From epidemiology and biostatistics, we have
borrowed study design, the methodology that allows us to organize our EHR data
into a matrix that is amenable to the application of data mining algorithms that
can correctly answer meaningful clinical questions. We have also borrowed basic ap-
proaches from biostatistics and epidemiology to address the challenges that EHR data
posed including censoring, analysis of irregular time series data and methodologies for
causal inference1. In this section, we focus on the contributions of general data mining.

Traditionally, data mining techniques are broadly categorized as supervised or
unsupervised: supervised methods take an outcome into account, while unsupervised
methods simply learn from the structure of the data. The hallmark of EHR data is
its temporal nature, suggesting that data mining techniques be further categorized
based on their ability to take time into account. We call a data mining algorithm and
its resulting model time-aware, if outcome of interest depends on time; and we call it
time-agnostic, if it builds a model that does not take time into account.

Although EHR data is inherently temporal, time is not always of relevance. The
clinical question we aim to answer may be temporal if time is of relevance (i.e. time is
part of the question) or it may be atemporal (not temporal) if time is not part of the
question. Atemporal questions are naturally answered by time-agnostic data mining
techniques. On the other hand, temporal questions can be either answered by time-
aware models or if the question can be transformed into a simpler atemporal question,
it can also be solved using time-agnostic models. For example, predicting the risk of

1The roots of causal inference are in computer science,but has been embraced by epidemiology and biostatis-
tics resulting in the development of the advanced techniques we described earlier.
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30-day mortality after surgery is a temporal question (time is part of the question)
but it can be solved using time-aware models (e.g. Cox model) or time-agnostic models
(e.g. logistic regression).

Supervised Unsupervised
Time Aware Cohort and Retrospective

Studies (8.3.2)
Temporal Descriptive Studies
(8.1.2)

Time Agnostic Cross-Sectional Studies
(8.2),Cohort and Retrospective
Studies (8.3.1)

Atemporal Descriptive Studies
(8.1.1)

The study design dictates whether a question can be temporal or atemporal and it
also determines in large part whether any of the challenges posed by the EHR data
can be successfully addressed. For this reason, we describe data mining techniques
that are commonly applied in the context of the applicable study designs. In Table-1,
we present the structure of the following subsections.

Tan et al. [Tan et al. 2006] provides a comprehensive broad, yet in-depth overview of
the field of data mining. Their book discusses various techniques related to clustering,
classification and pattern identification. Clustering can be broadly divided as a
division of data into groups of similar objects. Berkhin et al. [Berkhin 2006] survey
concentrates on clustering algorithms from a data mining perspective. They believed
that clustering is a data modeling techniques that provides concise summarization
of the data. In their survey articles, they demonstrate how clustering techniques can
be used in a broad range of applications. Hipp et al. [Hipp et al. 2000] presented a
survey on efficient algorithms widely used for association rule mining related tasks.
In their survey, they first explained the fundamentals of association rule mining
and demonstrated the similarities and differences among various association rule
mining related techniques. They also observed that that the run-time behaviors of the
various association rule mining techniques are much more similar to the contrary.
Han et al. [Han et al. 2007] provided a brief overview of frequent pattern mining
related activities across frontiers such as sequential pattern mining, structure pattern
mining, correlation mining and associative classification. They believed that frequent
pattern mining research has had a deep impact on data mining methodologies.

8.1. Descriptive Studies
Descriptive studies represent the broadest variety of inquires we can undertake,
ranging from simple statistics (prevalence rate, incidence rate) to descriptions of the
progression of a particular diseases via case studies. Such simple applications do not
require data mining, but data mining techniques enable more advanced applications
including comorbidity analysis and trajectory mining. While descriptive studies cover
a wide range of applications, their defining characteristic is that no comparison is
made between patients (or patient groups) with and without a particular outcome.
Without a particular outcome, we cannot have outcome labels hence the problem at
hand is unsupervised.

Descriptive studies are commonly utilized to answer both temporal and atemporal
clinical questions. For example, estimating prevalence rates at a particular time is an
atemporal clinical question, while extracting the trajectory of a patient as sequences
of diagnosis codes is naturally a temporal clinical question. Therefore both time-aware
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and time-agnostic data mining techniques are applicable to descriptive studies.

8.1.1. Atemporal Descriptive Studies. Atemporal descriptive techniques are arguably
the simplest methods, typically textbook methods. A prototypical application of this
nature would be to take a cross-section of the population at a particular time and
cluster the patients based on the conditions they present. Textbook data mining
techniques have a limited ability to handle the temporal aspect of EHR data. One
option is to use specialized techniques, such as sequence mining, while another is
to ”flatten” the temporal dimension of the data through temporal abstraction, e.g.
by applying features and apply non-temporal unsupervised techniques. EHRs are
inherently temporal in nature, but such data is usually converted into atemporal by
taking a snapshot of a patient’s data at a point in time.

In this section, we would be discussing how Unsupervised techniques have been
widely used for identifying clusters of patients that have similar characteristics
(e.g. demographics, medications, diagnosis codes, laboratory test results) and for
finding associations between clinical concepts (e.g. medications, diagnosis codes and
demographic attributes). Next, we would discuss how these techniques make use of
the approaches we discussed in Section 5.

Clustering: Gotz et al. [Gotz et al. 2011a] used clustering techniques for identifying
a cohort of patients similar to a patient under observation. They used the cohort as
a surrogate for near-term physiological assessment of the target patient. Roque et al.
[Roque et al. 2011] stratified patients using hierarchical clustering, where the distance
between patient records was computed using the cosine similarity of diagnosis codes.
Bauer-Mehren et al. [Bauer-Mehren et al. 2013] used medical concepts (medication
information, diagnosis codes, procedure codes) for patient stratification, where the
Jaccard index was used as the similarity measure. Along similar lines, Doshi et
al. [Doshi-Velez et al. 2014] investigated the patterns of co-occurring diseases for
patients diagnosed with autism spectrum disorders (ASD). They identified multiple
ASD related patterns using hierarchical clustering. They further discussed how the
aforementioned patterns can be attributed to genetic and environmental factors.
Kalankesh et al. [Kalankesh et al. 2013] noted that representing the medical state
of a patient with diagnosis codes can lead to sparse clusters since EHRs contains
large number of diagnosis codes often running into thousands. To overcome this
problem, they used Principal Component Analysis (PCA) [Dunteman 1989] to reduce
the dimensionality, thereby making the structure more amenable for visualization
and clustering. Marlin et al. [Marlin et al. 2012] developed a probabilistic clustering
method to mitigate the effects of unevenly spaced data, which is inherent in EHRs.
They used unsupervised learning techniques for automatically uncovering insightful
patterns from physiologic time-series data.

Association Analysis: Association rule mining techniques [Zhang and Zhang
2002] such as Apriori have also been used on EHR data to identify associations among
clinical concepts (medications, laboratory results and problem diagnoses). These tech-
niques have the ability to discover associations and interpretable patterns from EHRs
data. However, the performance of such techniques often deteriorates when there are
large number of clinical variables present in EHRs. Wright et al. [Wright et al. 2010a]
used the Apriori framework to detect transitive associations between laboratory test
results and diagnosis codes and between laboratory test results and medications.
For example, they observed some unexpected associations between hypertension and
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insulin. They attributed this finding to co-occurring diseases and proposed a novel way
to identify such transitive associations. Cao et al. [Cao et al. 2005] used co-occurrence
statistics to identify direct and indirect associations among medical concepts. Holmes
et al. [Holmes et al. 2011] used statistical approaches to detect associations between
rare diseases. They observed that analyzing cohorts comprised of sick patients leads
to identification of significant findings. Shin et al. [Shin et al. 2010] used association
rule mining to identify co-morbidities (e.g. non-insulin dependent diabetes mellitus
(NIDDM) and cerebral infarction) which are strongly associated with hypertension.
Hanauer et al. [Hanauer et al. 2009] used statistical tests to observe common path-
ways for diseases such as granuloma annulare and osteoarthritis.

Overcoming Challenges: As these studies often deal with information collected
at one time instant or summarized until the time of interest, causal analysis is not
feasible. Further, as these study designs lack a case and a control group, identifying
causal factors leading to the outcome of interest is a challenging problem. However
associating predictors with outcomes can be carried out with ease. In order words,
it is not possible to distinguish whether the outcome of interest (i.e. condition)
preceded or followed the condition. Although the study design is inherently atemporal,
longitudinal data can still be used for research purposes. In such studies longitudinal
data is often summarized or aggregated. Examples of summarization and aggregation
include computing the mean, median, averages, variance, higher order moments
and shaplets using temporal logic rules. On one hand, these aggregation techniques
convey meaningful information about temporal and seasonal trends, but on the other
hand they are highly susceptible to outliers and noise.

How to handle censored data is often an issue in such study designs. Data in-
corporating right censoring cannot be used for modeling as such patient records
often have no information about the outcome variable. Therefore, there is no way
to ascertain the prevalence of existing conditions with outcome variables. However,
patient records susceptible to left censoring might not be discarded because we may
have no information for some characteristics, we can still model them as unknown
quantities. Typically this would require sophisticated research techniques. Further, in
clustering, the challenges lies in the semantic differences between the groupings as
patient stratification using ICD codes might lead to biases. Such biases arise because
ICD codes are often generated for billing related purposes.

8.1.2. Temporal Descriptive Studies. Time plays an important role in the clinical ques-
tions. For example, the sequence of events, timing between events, etc. Standard
textbook data mining techniques exist to solve such problems (e.g. sequence mining,
Markov models, etc), but to achieve better results, significant improvements have
been proposed. We broadly classify the approaches that can be carried out using such
techniques as those which use time-aware techniques, e.g., sequence mining, time-
lagged correlations, etc., and those which simplify the problem and apply time-agnosic
techniques e.g., temporal-abstraction (summarizing the longitudinal data) and HMM
trajectory clustering (using HMM to simplify away time so that standard clustering is
applicable).

Temporal Abstraction Framework: The temporal abstraction framework has
been frequently used to prepare patterns from EHR data. Patterns can be abstracted
using state representations (e.g. high, medium or low) or trend representations(e.g. in-
creasing, decreasing, constant). Shahar et al. [Shahar 1997] provided a mechanism to
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abstract patterns from unevenly spaced time-series. Such time-series are common in
EHR data elements such as laboratories test results and vitals. They further proposed
temporal logic relations to combine patterns generated from univariate time-series.
Sacchi et al. [Sacchi et al. 2007] extended the temporal abstraction framework to gen-
erate temporal association rules (TARs). In TAR’s, the antecedent and the consequent
both consist of temporal patterns generated using the temporal abstraction frame-
work. Jin et al. [Jin et al. 2008] further extended the TAR framework, to generate
rules for mining unanticipated episodes where certain event patterns unexpectedly
lead to outcomes e.g. taking two medicines together sometimes causes an adverse
reaction. Batal et al. [Batal et al. 1994] used the temporal abstraction framework
to propose the Segmented Time Series Feature mining algorithm for identifying the
frequent patterns from an unevenly sampled time-series. Such modeling techniques
have their own set of challenges. Patterns generated from individual patient time
series are susceptible to noise. Further, such patterns can be of uneven temporal
duration.

Dynamic Clustering: Clustering techniques have also been used to group EHR
data. Ghassempour et al. [Ghassempour et al. 2014] used hidden Markov mod-
els (HMM) to cluster patient medical trajectories. In their approach, they used
both categorical variables (diagnosis codes) and continuous variables (vitals and
laboratories test results) for clustering. They first mapped each medical trajectory
to an HMM and then used KL divergence to compute the distance between two HMM’s.

Sequential Rule Mining: Researchers have explored sequential association rule
mining techniques for identifying causal relationships between diagnosis codes.
Hanauer and Ramakrishnan [Hanauer and Ramakrishnan ] identified strongly
associated pairs of ICD-9 codes with varying numbers of strong temporal associations
ranging from 1 day to 10 years apart. They observed interesting temporal relation-
ships between hypothyroidism and shingles (herpes reactivation). Liao and Chen [Liao
and Chen 2013] proposed a sequential pattern mining approach to mine sequences
with a gap constraints. Such gaps represent the delay between two concepts. Hrip-
sack et al. [Hripcsak and Albers 2013] measured lagged linear correlation between
EHR variables and healthcare process events. In their analysis, they considered
five common healthcare process events: inpatient admission, inpatient discharge,
outpatient visit, emergency department visit and ambulatory surgery and computed
their correlation with several EHR variables such as laboratory values and concepts
extracted from clinical notes.

Visualization: Research has also been carried out in analytical reasoning facil-
itated by advanced interactive visual interfaces. Several research has been carried
out by highlighting the opportunities and associated challenges [Caban and Gotz
2015], cohort analysis and exploration [Zhang et al. 2014; Gotz et al. 2012a], exploring
comorbidities [Gotz et al. 2012b; Sun et al. 2010], exploring concepts [Cao et al.
2011b], clinical decision support [Gotz et al. 2011b], cohort identification [Cao et al.
2011a], disease network visualization [Perer and Sun 2012] and temporal frequent
event sequences [Perer and Wang 2014].

Overcoming Challenges: As there are no comparison groups present (i.e. no
case and control) any exploration for causation of disease or outcome of interest is
not possible. In this aspect, they are highly reminiscent of atemporal descriptive
study designs. The major difference with atemporal descriptive studies being that
for atemporal descriptive studies, only prevalence rates can be computed, while for
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temporal descriptive studies, prevalence as well as incidence rates can be computed.
Another advantage of such studies lies in their ability to handle censored data. All
kinds of censored data such as right censored,left censored or interval censored can
be managed using such techniques. For example, patient records with certain clinical
characteristics but no information about the outcome of interest can be used for
modeling purposes. For such analysis, survival regression methods are often used.
These methods mostly aim at modeling the time to event data.

In these studies, data for every patient is often available at multiple time instances.
With availability of this data, sophisticated and rigorous techniques that can model
time-varying covariates and outcomes can be efficiently utilized. However, until now
not much research has been carried along these lines. In the past, research has focused
more on lagged correlations and sequential patterns. Although the aforementioned
approaches are quite informative, they are also quite susceptible to biases and
confounding effects.

8.2. Cross-Sectional Design
Cross-sectional studies are carried out by collecting data at one time point. The aim
of such studies is usually to estimate the prevalence of the outcome of interest i.e. to
investigate the associations between risk factors and the outcome of interest. In such
studies, data is often collected on individual characteristics, such as exposure to risk
factors, demographic attributes and information about the outcome. In what follows,
we will describe the techniques often used for such study designs along with examples
of research carried out in the past.

When a study is designed as cross-sectional, supervised non-temporal data mining
techniques are the natural modeling choices. When the study is inherently temporal
and it employs a case-control or cohort design, it can still be solved using supervised
non-temporal techniques,but we incur some loss of information. Supervised non-
temporal techniques allow for having a well-defined outcome but have no facility to
extract the temporal information from the data. In other words, the studies described
in this section may be temporal in nature, but the algorithms that were used to solve
them are non-temporal. For example, a study investigating the 30-day mortality
of patients following an exposure can be modeled using supervised non-temporal
techniques as long as we only consider a binary outcome, namely, whether the
patients survived for 30 days or not. If our primary interest is the time itself, and
we wish to model the length of time during which the patients actually survived we
would have to employ supervised temporal techniques. Analogously, transforming
time-dependent predictors to non-temporal predictors through temporal abstraction
is possible, allowing for the application of supervised non-temporal techniques to
complex temporal study designs—naturally, at the cost of losing information. Since
interest in a specific outcome is very natural and there is great appeal in simplifying
these problems to become solvable through relatively simple supervised non-temporal
data mining techniques,such techniques have been applied to a broad spectrum of
problems, including risk prediction for hospitalization, re-hospitalization, diagnostic
and prognostic reasoning.

Rule Based Methodologies: White et al. [White et al. 2013] conducted a large
scale study for analyzing web search logs for detection of adverse events related to the
drug pair,paroxetine and pravastatin. They analyzed whether the drug interaction
leads to hyperglycemia. Iyer et al. [Iyer et al. ] used NLP techniques for mining
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clinical notes to identify events related to adverse drug-drug associations. They
believed that EHRs contain rich information in the unstructured notes. Haerian
et al. [Haerian et al. 2012] hypothesized that adverse events might be caused by
the patient’s underlying medical condition. Along similar lines, Vilar et al. [Vilar
et al. 2012] used disproportionality based techniques to analyze adverse drug events
related to pancreatitis, Li et al.[Li et al. ] used penalized logistic regression to analyze
associations between ADRs and Epstein et al. [Epstein et al. ] used NLP techniques to
analyze medication and food allergies. Supervised non-temporal methodologies have
been frequently used in the form of rule-based techniques for cohort identification.
Phenotyping algorithms for diseases such as celiac disease, neuropsychiatric disor-
ders, drug-induced liver injury and T2DM [Pathak et al. 2013a; Carroll et al. 2011;
Xu et al. 2011] have been widely explored. Supervised pattern mining approaches
using the temporal abstraction framework have been used for predicting Heparin
Induced Thrombocytopenia (HIT) [Batal et al. 1994]. Batal and Hauskrecht [Batal
and Hauskrecht 2010] used such methodologies to generate minimal predictive rules
for Heparin Platelet Factor 4 antibody (HPF4) test orders. They further extended their
approach by introducing the minimal predictive patterns (MPP) framework wherein
they directly mine a set of highly discriminative patterns [Batal et al. 2012]. Those
patterns were later used for classification related tasks.

Bayesian Networks: Bayesian Networks have also been used to model EHRs for
diagnostic reasoning (constructing the medical state of the patient using laboratory
test results), prognostic reasoning (prediction about the future), and discovering func-
tional static interactions between the outcome and the predictors [Lucas et al. 2004].
Zhao et al. [Zhao and Weng 2011] integrated knowledge from Pubmed along with EHR
data to develop a weighted bayesian network for pancreatic cancer prediction. They
also discussed how their approach can be used to detect clinically irrelevant variables
for disease prediction. Sverchkov et al. [Sverchkov et al. 2012] compared clinical
datasets by capturing the clinical relationships between the individual datasets by
using the Bayesian networks. The multivariate probability distributions were then
used to compare the clinical datasets.

Overcoming Challenges: Numerous issues and challenges arise when we analyze
EHR data using such study designs. The foremost issue is causality. It is limited by
the nature of such study designs, as information is usually collected at one time point
and hence, it gives no indication of the sequence of events: whether exposure occurred
before, after or during the onset of the disease outcome. Inferring causation with this
caveat might lead to erroneous findings and thus it is impossible to infer causality. By
virtue of their design, longitudinal analysis is not possible in such studies. However,
techniques (as mentioned in atemporal descriptive study designs) such as the tempo-
ral abstraction framework or qualitative abstraction techniques such as by computing
the mean, median, mode, variance or slope are widely used to employ time-agnostic
strategies. The substantial difference go atemporal descriptive study designs is the
availability of comparison groups in these studies. They provide a platform amenable
for applications such as adverse event detection, and cohort identification. In terms of
censoring, right censored data poses substantial challenges,as no information about
the outcome is present. However, left censored and interval censored data can be
handled by such techniques to a great extent.
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8.3. Cohort and Retrospective Study Design
Cohort and Retrospective studies compare patients groups with different exposures
over time and record their outcomes. They differ in the direction in which time
is observed: in cohort studies patients are followed from exposure to outcome and
inretrospective studies,patients are followed from outcome to exposures. While this
difference has far-reaching consequences on the required sample sizes, exposure rates
and the metrics we can estimate, once the design matrix has been constructed, the
same data mining methods apply to both of these study designs. Hence we consider
these two designs together.

What is common across these study designs is that they are best suited to answer
temporal questions; if time is not of interest, a cross-sectional study would suffice. As
it is typical with temporal questions, we can use either time-aware models or we can
simplify the question such that it can be answered using time-agnostic models. In the
following paragraphs, we provide examples of both.

8.3.1. Time-Agnostic Models for Cohort and Retrospective Studies. Time Agnostic Regres-
sion: Supervised time-agnostic models are commonly employed when time-to-event
can be removed from the clinical question. For example, time-to-rehospitalization
can be simplifed to the binary outcome of 30-day rehospitlaization (yes/no) of 30-day-
rehospitalization (yes/no) which does not include time. Applications of supervised
time-agnostic modeling include predicting the onset of neonatal sepsis [Mani et al. ],
potentially preventable events [Sarkar and Srivastava 2013], 30 day hospital read-
missions [Cholleti et al. 2012; Park and Ghosh 2014b], post-hospitalization VTE risk
[Kawaler et al. 2012] [Zhai et al. 2014], T2DM risk forecasting [Mani et al. 2012], atrial
fibrillation [Karnik et al. 2012], 5 year long life expectancy risk calculation [Mathias
et al. 2013], risk of depression using diagnosis codes [Huang et al. 2014], survival
of heart-lung transplant patients [Oztekin et al. 2009], breast cancer survivability
[Sarvestani et al. 2010], 30 day mortality in patients suffering with cardio-vascular
diseases, risk of retinopathy in patients suffering from type 1 diabetes mellitus
(T1DM) [Skevofilakas et al. 2010], mortality in patients suffering from acute kidney
injury [Matheny et al. ], mortality prediction in ICU [Herasevich et al. 2013] and risk
of dementia [Maroco et al. 2011]. For these analyses, almost all flavors of common
predictive modeling techniques ( decision trees [Mani et al. 2012; Sarvestani et al.
2010] ,[Austin et al. 2012], ensemble techniques (e.g. bagging,boosting,random forests)
[Cholleti et al. 2012; Kawaler et al. 2012; Mani et al. ],[Karnik et al. 2012],nave Bayes
[Kawaler et al. 2012; Karnik et al. 2012; Sarvestani et al. 2010], linear regression,
support vector machines[Mani et al. 2012] and logistic regression [Zhai et al. 2014;
Mani et al. 2012; Cholleti et al. 2012; Huang et al. 2014; Chang et al. 2011] have been
used. These techniques have also been used for identification of regional differences
in breast cancer survival rates despite guidelines [Ito et al. 2009], comparison of
cancer survival rates across continents [Coleman et al. 2008],comparison of cancer
and survival patients over time, exploring relationships between hospital surgical
volumes and 5 year relationship of stomach cancers [Nomura et al. 2003], comparing
dosage volumes of warfarin in European-American and African-American [Ramirez
et al. 2012], postpartum depression rates in Asian-American subgroups (Indian,
Chinese, Filipino, Japanese, Korean, Vietnamese) [Goyal et al. ], analyzing the
effect of different ethnicities on different levels of susceptibility to diabetes related
complications and studying the detrimental effect of fibrates on women as compared
to men in a population presenting with high cholesterol levels.
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Ghalwash et al. [Ghalwash and Obradovic ] proposed predictive modeling technique
to find a suitable duration of the hemoadsorption (HA) therapy control and observed
that their method led to substantial monetary savings. Sun et al. [Sun et al. 2014]
worked on predicting the risk and timing of deterioration in hypertension control
by analyzing the transition points at which hypertension is brought into as well as
pushed out of control. Wang et al. [Wang et al. 2015] developed a dynamic Poisson
autoregressive model with exogenous input variables for flu forecasting where in they
allowed the autoregressive model to change over time. Panahiazar et al. [Panahiazar
et al. 2015] built a heart failure risk prediction model using several machine learning
techniques where in they included multiple comorbidities which lead to improvement
in prognostic predictive accuracy. Wang et al. [Wang et al. 2014] proposed Multilinear
sparse logistic regression to handle data in the form of multi-dimensional arrays.
They used their methods to predict the onset risk of patients with Alzheimer’s risk
and heart failure.

Overcoming Challenges: Such techniques also have their own share of caveats.
Causal analysis is not possible as time-to-event data is often ruled out and there is
no way to ascertain the relationship between diseases and the outcome of interest.
The inherent design of such techniques rules out longitudinal analysis. Temporal
abstraction is also employed to summarize time. As comparison groups are available
in such study designs they are well-suited for applications such as risk prediction.
Further, handling right censored is not possible but handling left censored data and
interval censored data is plausible.

8.3.2. Time-Aware Models for Cohort and Case/Control Studies. Supervised time-aware
models are utilized when the clinical question cannot be simplified or if the simpli-
fication to time-agnostic modeling comes at a significant loss of information. Such
question focus on the time-to-event itself (clearly cannot be simplified), sequences
of events or when time-to-event carries additional information about the outcome.
Continuing with the example of 30-day rehospitalization, by simplifying the outcome
to binary yes/no, we lose information since we ignore whether the patient was
re-hospitalized in (say) 7 days vs 20 days. The former case is clearly more severe.

Many of the temporal clinical questions are related to right censoring. Survival
modeling, which was specifically developed for this purpose, is the quintessential
technique for this study design. Survival modeling is a suite of techniques with
various specializations that share a common characteristic of being able to handle
time and censoring. Other techniques which incorporate the effect of time include
dynamic bayesian networks, sequential pattern mining, etc.

Survival Modeling: Wells et al. [Wells et al. 2008] hypothesized that patients
diagnosed with T2DM have an increased risk of mortality. They used Cox proportional
hazards regression with time to death as the outcome. They also observed that certain
interaction terms involving medications and age were significant indicators. Vinza-
mury and Reddy [Vinzamuri and Reddy 2013] extended Cox proportional hazards
regression with novel regularization functions to capture correlation and grouping
of features effectively. They proposed novel regularization frameworks to handle the
correlation and sparsity present in EHR data. They demonstrated the applicability
of their technique by identifying clinically relevant variables related to heart failure
readmission. Vinzamury et al. [Vinzamuri et al. 2014] proposed a novel active learn-
ing based survival model wherein continuous feedback from a domain expert can be
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utilized to refine the model. Survival modeling techniques on time-to-event data have
been explored widely in the past. Cox regression [Cox 1992; Vinzamuri and Reddy
2013] is one of the most commonly used survival regression models. Its formulation,
namely its semi-parametric nature,with the mild assumption of the proportionality
of hazards, makes it ideal for many practical applications in fields such as economics
[Wooldridge 1992], healthcare [Ikeda et al. 1991; Liang et al. 1990; Lumley et al. 2002]
and recommendation systems [Kapoor et al. 2014].

Cox models, as most other regression techniques,are susceptible to overfitting.
Standard regularization techniques, developed for other regression methods, have
been applied to Cox models, as well. Lasso [Tibshirani et al. 1997] and elastic-net
regularized Cox models [Simon et al. 2011a] have been developed, and have been
further extended by regularizing them with convex combinations of L1 and L2
penalties [Zhang and Lu 2007]. We are not aware of regularization for time-dependent
covariate Cox models [Therneau and Crowson 2014], which would be a straightfor-
ward extension.

Reddy et al. [Vinzamuri et al. 2014] proposed an active learning based survival
model which uses a novel model discriminative gradient based sampling scheme and
observed better sampling rates as compared to other sampling strategies. They also
proposed correlation based regularizers with Cox regression to handle correlated and
grouped features which are commonly seen in many practical problems [Vinzamuri
and Reddy 2013]. Similarly Gopakumar et al. proposed a stabilized sparse Cox model
of time-to-events using clinical structures inherent in Electronic Medical Records.
They estimated the feature graph derived from two types of EMR structures: the
temporal structure of the disease and intervention recurrences, and the hierarchical
structure of medical knowledge and practices [Gopakumar et al. 2014]. To handle
the high-dimensionality of high-throughput genomic data, Kuang et al. [Zhang et al.
2013] extended Cox models by proposing network-based Cox regression model called
Net-Cox and applied Net-Cox for a large-scale survival analysis across multiple
ovarian cancer datasets.

Support vector machine [Hearst et al. 1998] models have also been extended to han-
dle censored data [Khan and Zubek 2008; Evers and Messow 2008; Shivaswamy et al.
2007; Van Belle et al. 2007; Shiao and Cherkassky 2014]. In such techniques, often
the task is converted into a ranking problem via the concordance index. This in turn is
efficiently solved using convex optimization techniques. Along similar lines,Khosla et
al. [Khosla et al. 2010] proposed a margin based censored regression algorithm which
combines margin-based classifiers with censored regression algorithms to achieve a
better concordance index. They used their technique to identify potential novel risk
markers for cardiac problems.

Research has also been carried out on extending decision trees to handle censored
data [Gordon and Olshen 1985]. Ishwaran et al. [Ishwaran et al. 2008] proposed
Random Survival Forests for analyzing right censored survival data. They analyzed
splitting rules for growing survival trees, introduced a new measure of mortality and
applied it for patients diagnosed with coronary artery disease. Neural nets have also
been adapted to handle censored data with varying results [Kattan et al. 1998; Snow
et al. 1994]. Techniques such as reverse survival [rev ] have also been explored in the
past wherein they go further back in time.
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Dynamic Bayes Networks: While survival models are by far the predominant
type of models, other methods that can incorporate temporal information also exist.
Dynamic Bayesian networks (DBN) have been used to model temporal relationships
among EHR variables [Rana et al. 2015]. Nachimuthu et al. [Nachimuthu et al.
2010] used DBN’s to model temporal relationships between insulin and glucose
homeostasis. The modeling was further used to predict the future glucose levels of
a patient admitted in an ICU. They also discussed the reasons for using first-order
Markov models to model the temporal relationships. Sandri et al. [Sandri et al. 2014]
used DBNs with multiple order dependencies to impose restrictions on the causal
structure,while modeling organ failure in patients admitted to an ICU. In their model,
each time-stamp represented a day. They further imposed several constraints such as
that no patient discharges were recorded on the second day and that all patients were
either deceased or considered discharged on their seventh day. Such constraints were
imposed to reduce complexity of the model. Along similar lines, Rose et al. [Rose et al.
2005] used DBN’s to assist physicians in monitoring the weight of patients suffering
from chronic renal failure, Gatti et al. [Gatti et al. 2011] used it to model heart failure
and Peelen et al. [Peelen et al. 2010] used hierarchical DBN’s for modeling organ
failure. Expectation-Maximization was used to learn conditional probabilities in these
DBN’s.

Sequential Pattern Mining: In the realm of supervised temporal pattern mining,
research has extended the temporal abstraction framework by mining recent temporal
patterns for monitoring and event detection problems in patients suffering from
T2DM [Batal et al. 2012]. Sengupta et al. [Sengupta and Naik 2013] used similar
techniques for detecting sequential rules associated with the early identification of
brain tumors. Simon et. al. [Simon et al. 2013a] proposed survival association rule
mining (SARM) techniques which uses survival modeling techniques to incorporate
the effects of dosage and other confounders such as age and gender.

Overcoming Challenges: These techniques are by far the most successful in
terms of overcoming EHRs related challenges. Right, left and interval based censoring
can be easily handled by employing techniques such as Cox proportional hazards
regression and accelerated failure models.

The biggest claim of such techniques is their ability to handle causation. As
these techniques have comparison groups (i.e. case and control) and can handle
time-to-event data, causal analysis can be performed with ease. Further, causation by
adjusting for measured confounders can also be analyzed by using marginal structural
models and structured nested models. However the literature of such techniques in
computer science is very sparse. One area, where more work should be done is to
handle unmeasured confounders for the disease of interest. Similarly more research
needs to be focused in areas where the effects of confounders need to be adjusted for
time-to-event data.

9. CLINICAL DATA MINING APPLICATIONS
In section 2, we discuss the various applications areas where EHRs have been used
to extract meaningful information. In section 8, we introduced and discussed various
data-mining techniques which have been widely used in the recent past for exploring
and extracting information associated with EHRs. In this section, we will analyze
the research carried out in various application areas in conjunction with the data-
mining techniques. Such an analysis, will provide examples of how research has been
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traditionally carried out in various application areas using existing data mining tech-
niques. This analysis can then be used to carry out research in novel application areas.

Jensen et al. [Jensen et al. 2012] discussed different types of EHR data including
health records, radiological images and clinical texts. They presented how this data
can be used for applications such as pharmacovigilance and subpopulation analysis.
They also discussed limitations associated with EHRs such as patient privacy, patient
consent and interoperability across institutions and countries. Reddy and Agarwal
[Reddy and Aggarwal 2015] provided a comprehensive overview of different aspects
of healthcare data analytics. In their book, they explored EHRs in the context of
biomedical image analysis, sensor data analysis, biomedical signal analysis, genomic
data analysis, clinical text mining and social media analysis. They also reviewed
advanced topics such as clinical prediction models, visual analytics, clinico-genomic
data integration, healthcare analytics for pervasive health, fraud detection and mobile
imaging for biomedical applications.

9.1. Understanding the Natural History of Disease
Research in past have focussed on exploring disease progression patterns and co-
morbidity analysis. Jensen et al. [Jensen et al. 2014] have explored temporal disease
progression patterns in data from an electronic health record registry which covers
the entire population of Denmark. Using this cohort, they identified 1171 significant
trajectories. These significant trajectories were then clustered using key diagnosis
codes such as chronic obstructive pulmonary disease (COPD) and gout. Their findings
demonstrate how these trajectories have predictive potential and might be the basis
for predicting the next probable step in disease progression. Their findings also
elaborate the association and causality of certain diseases. They further demonstrated
how the population-wide disease trajectory approach uncovers diagnosis linkages
which might conflict with research based on the past epidemiological studies. Teno et
al. [Teno et al. 2001] examined differences in the pattern of functional decline among
persons dying of cancer and other leading non cancer causes of death. They observed
how patients with cancer experienced an increased rate of functional impairment
beginning as late as 5 months prior to death. Murtagh et al. [Murtagh et al. 2008]
analyzed how patients diagnosed with diseases have increased morbidity and an
increased risk of death from cardiovascular disease. They also demonstrated how
this exploration might lead to better patient management, thereby providing optimal
care for patients in the terminal phase of their disease. Wang et al. [Wang et al.
2014] proposed a probabilistic disease progression model that continuously learns
from discrete-time observations with non-equal intervals. Their model is also capable
of learning full progression trajectory. They demonstrated the applicability of their
model on diseases such as T2DM, cardiovascular and psychological complications.

In the past, researchers have used comorbidity analysis for observing how alcohol
usage is associated with depression, anxiety and personality disorders [Roque et al.
2011]. Doshi-Velez et al. used patient stratification techniques to observe comor-
bidities in patients suffering from autism spectrum disorders [Doshi-Velez et al.
2014]. Wright et al. [Wright et al. 2010b] employed the Apriori framework to detect
associations between clinical concepts (laboratories test results, medications) and
problem lists. Cao et al. [Cao et al. 2005] used a statistical framework to detect
an association between diseases such as ’myasthenia gravis ’and ’cushingoid facies’.
Similarly Holmes et al. [Holmes et al. 2011] studied the comorbidities for rare diseases
such as Kaposi sarcoma, toxoplasmosis and Kawasaki disease. Using the association
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rule mining framework, Shin et al. [Shin et al. 2010] explored the comorbidities
associated with hypertension such as non-insulin dependent T2DM, cerebral infection
and chronic renal failure. Dasgupta et al. [Dasgupta and Chawla ] analyzed disease
drug relations by using advanced network clusters. They hypothesized that studying
drugs in isolation can provide a different perspective on how two drugs can interact.

9.2. Cohort Identification
Cohort identification usually employs supervised learning techniques, where the gold
standard is defined using expert clinical knowledge. Such identification, using ICD-9
codes and narrative data, has been used to develop automated models to identify
patients with cancer [Friedlin et al. 2010], rheumatoid arthritis [Liao et al. 2010],
pneumonia [Liao et al. 2010], critical care [Halpern et al. 2014] and asthma [Meystre
et al. 2009]. Kandula et al. [Kandula et al. 2011] developed a bootstrapping learning
method that, starting with an initial classification based on ICD-9 codes, iteratively
improves cohort accuracy through training on relevant structured data. Their pro-
posed method does not require prior information about the true class of the patients.
They used their method to identify T2DM and hyperlipidemia patient cohorts from
a database of 800,000 patients. Rasmussen et al. [Rasmussen et al. 2014] discussed
phenotype design patterns based on existing phenotype algorithm definitions from
the eMERGE network. They believed it would help researchers in working with EHR
data for algorithm development. Castelli et al. [Castelli et al. 1977] used phenotyping
to analyze the relationship between coronary heart disease (CHD) prevalence and
fasting lipid levels. They observed how inverse HDL cholesterol-CHD association was
not appreciably diminished when adjusted for levels of low density lipoprotein (LDL)
cholesterol and triglyceride.

Newton et al. [Newton et al. 2013] worked on validating EMR-derived phenotypes
and made the following observations: multisite validation improves phenotype al-
gorithm accuracy, algorithm development and validation work best as an iterative
process, validation by content experts or structured chart review can provide accurate
results and patient movement in and out of the health plan (transience) can result
in incomplete or fragmented data. Overby et al. [Overby et al. 2013] worked on de-
veloping a collaborative approach for an electronic health record (EHR) phenotyping
algorithm for drug-induced liver injury (DILI) and demonstrated the portability of
their algorithm across multiple institutions. They also observed that the performance
of their algorithm for identifying DILI was comparable with other computerized
approaches used to identify adverse drug events.

Pathak et al. [Pathak et al. 2013b] identified various challenges associated with
phenotyping EHRs including developing approaches for high-throughput extraction
and representation of phenotypes, building techniques for storing, integrating,
and querying phenotype data and advancing phenotypic-driven analysis to derive
phenotype-genotype associations. Schram et al. [Schram et al. 2014] worked on an
extensive phenotyping study that focuses on the etiology of type 2 diabetes (T2DM),
its associated complications, and its emerging comorbidities. Their study uses state-
of-the-art imaging techniques and extensive biobanking to determine health status
in a population-based cohort of several thousand individuals that is enriched with
T2DM individuals. Boland et al. [Boland et al. 2013] introduced a new concept called
verotype by integrating genetics along with EHRs for patient identification. They
believed verotypes would be useful for personalized medical treatment regiments.
Gotz et al. [Gotz et al. 2014] combined data mining and visualization techniques
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to retrieve patient cohorts that satisfy complex clinical events. They achieved this
by integrating visual queries, on-demand analytics and interactive visualization.
Their system also provided an interactive visual environment for the exploration and
analysis of temporal medical event data. Wang et al. [Wang et al. 2013] worked on
segmenting patient cohorts by incorporating prior knowledge from domain experts.
They hypothesized that such domain knowledge is very important as it reflects crucial
medical insights which are validated by extensive clinical studies. They then used
these cohorts for developing group-specific risk prediction models.

Peissig et al. [Peissig et al. 2012] developed a technique to identify subjects with
age-related cataracts and the associated cataract attributes using only information
amiable in the EHR. They demonstrated that a multi-modal approach which includes
the use of EHRs along with clinical notes increases the predictive performance.
Pathak et al. [Pathak et al. 2012] proposed semantic web technologies for extracting
phenotyping data from EHRs. They discussed how such techniques would allow
federated querying, reasoning, and efficient information retrieval across multiple
sources of clinical data and information. More recently, Ho et al. [Ho et al. 2014c;
Ho et al. 2014b; 2014a] proposed tensor factorization methods to derive phenotypes.
Schulam et al. [Schulam et al. 2015] proposed the Probabiliistic Subtyping Model
(PSM) to identify subgroups based on clustering individual clinical severity markers.
Their method uses hierarchical clustering to account for variability arising due to
noise and irregular sampling methods. Hu et al. [Hu et al. 2012] proposed a vector
space model to represent patient utilization profiles, and apply clustering techniques
to identify utilization groups within a given population. Their technique can be used to
identify high utilization users from low utilization users thereby leading to detection
of anomalous patient profiles.

9.3. Risk Prediction/Biomarker Discovery
Such applications usually employ supervised techniques for risk prediction and
biomarker discovery. Greenland et al. [Greenland et al. 2004] analyzed how risk
assessment associated with coronary heart disease might be improved by additional
tests such as coronary artery calcium scoring (CACS). Knaus et al. [Knaus et al. 1991]
refined the APACHE (Acute Physiology, Age, Chronic Health Evaluation) methodology
in order to more accurately predict hospital mortality risk for critically ill patients
in ICUs. They also analyzed the relationship between the patient’s likelihood of
surviving to hospital discharge and the following variables: major medical and
surgical disease categories,acute physiologic abnormalities,preexisting functional
limitations,major comorbidities, and treatment location immediately prior to ICU
admission. Sarkar et al. [Sarkar et al. 2012] presented a methodology for developing
an improved feature selection technique that will help in accurate prediction of
outcomes after hematopoietic stem cell transplantation(HSCT) for patients with acute
myelogenous leukaemia (AML). They also observed how their selected features were
similar to those obtained by traditional statistical techniques. Letham et al. [Letham
et al. 2013] used Bayesian model and Markov chain Monte Carlo sampling to develop
interpretable predictive models using EHRs data. Ebadollahi et al [Ebadollahi et al.
2010] worked on developing a decision support tool for near-term prognostic insight
to help clinicians better assess the impact of their decisions. They used inter-patient
similarity to project patient data into the future to provide insights about the query
patient. Feldman and Chawla [Feldman and Chawla 2014] presented ADMIT (Admis-
sion Duration Model for Infant Treatment) model,which yields personalized length of
stay estimates for an infant,utilizing data available from time of admission to the ICU.
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Their algorithm utilizes an augmentation of the Adaptive Boost algorithm, known as
the LogitBoost. Ngufor et al. [Ngufor et al. 2015] developed an efficient and accurate
algorithm that could estimate the risk of multiple outcomes simultaneously such as
perioperative bleeding,intraoperative RBC transfusion, ICU care, and ICU length
of stay. Byrd et al. [Byrd et al. 2014] constructed a system to automatically identify
heart failure diagnostic criteria. Kamkar et al. [Kamkar et al. 2015] used Tree Lasso
for feature selection along with state of the art classification problems for identifying
stable risk factors for many healthcare problems.

Tran et al. [Tran et al. 2014a] worked on development of auto-extracted standard
features from complex medical records, in a disease and task agnostic measure. They
demonstrated how their auto-extracted features achieve better discriminative power
for prediction hospital readmission. Lakshmanan et al. [Lakshmanan et al. 2013]
presented an approach for mining clinical care pathways correlated with patient out-
comes that involves a combination of clustering, process mining and frequent pattern
mining. Vijayakrishnan et al. [Vijayakrishnan et al. 2014] analyzed EHRs for earlier
identification of disease states such as heart failure (HF). They developed a novel
text and data analytic tool for analyzing longitudinal EHRs of over 50,0000 primary
care patients. Schrom et al. used association rule mining along with propensity score
matching to investigate how statin can lead to overt diabetes in certain subpopula-
tions [Schrom et al. 2013a]. Supervised techniques, such as survival association rule
mining [Simon et al. 2013a], have been used to discover biomarkers for T2DM. An
example found by the technique is the combination of (hyperlipidemia,triglycerides
and fibrates), which indicates high relative risk for T2DM. Harpaz et al. [Harpaz
et al. 2013] used statistical techniques to identify a chemical biomarker rasburicase,
that results in adverse events related to pancreatitis. Vellanki et al. [Vellanki et al.
2014] used Bayesian Nonparametric factor analysis along with clustering techniques
to identity biomarkers for children diagnosed with autism spectrum disorder (ASD).
They demonstrated that by using bayesian nonparametric framework, one can dis-
cover learning patterns (biomarkers) more efficiently as compared to the parametric
methods.

9.4. Predicting the next complication: What and When
Generalized linear regression and survival modeling techniques such as Cox propor-
tional hazards regression are often used for the development of such models. Yadav et
al. [Yadav et al. 2015] used Cox proportional hazards regression to estimate the risk
of potentially advanced complications such as Peripheral Vascular Disease (PVD),
Cerebral Vascular Disease (CVD), Ischemic Heart Disease (IHD) and Congestive
Heart Failure (CHF), often associated with T2DM. They first developed a diabetes
complication index which summarizes a patient’s health in terms of post-diabetic
complications into a single score. Through the use of this score, they track a patient’s
health and show that distinct trajectories in diabetes can be identified thereby
demonstrating the need and laying the foundation for future clinical EBP guidelines
that take trajectories into account. Zhao et al. [Zhao and Weng 2011] proposed a
novel method which combines PubMed knowledge and EHRs to develop a weighted
Bayesian Network Inference (BNI) model for pancreatic cancer prediction. Their
model was further used to compute probabilities for various risk factors or complica-
tions associated with pancreatic cancer prediction.

Considerable research has been performed to predict future complications associ-
ated with lung cancer [Algar et al. 2003], cardiac arrest [Detsky et al. 1986], bariatric
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surgery [Finks et al. 2011], carotid endarterectomy [McCrory et al. 1993], acute cough
[Hay et al. 2004], breast reconstruction [McCarthy et al. 2008], pulmonary resection
[Epstein et al. 1993; Ferguson and Durkin 2003; 2002; Ferguson et al. 1988], knee
replacement [SooHoo et al. 2006], lumbar decompression [Benz et al. 2001], orthopedic
surgery [Ozkalkanli et al. 2009], hysteroscopic surgery [Propst et al. 2000] and febrile
neutropenic cancer [Klastersky et al. 2006].Lui and Hauskrecht [Liu and Hauskrecht
2014; 2013a; Liu et al. 2013; Liu and Hauskrecht 2013b] modeled the irregularly sam-
pled clinical time series by using multiple Gaussian process sequences in the lower
level of our hierarchical framework and capture the transitions between Gaussian
processes by utilizing the linear dynamical system. They used their technique for
exploring complications associated with complete blood count (CBC) panel data for
post-surgical cardiac patients during hospitalization. Panahiazar et al. [Panahiazar
et al. 2014] used EHRs for inferring an individual patient’s response to Heart Failure
therapy. To carry out the aforementioned objective, they used patient-specific infor-
mation from the EHR, including medical comorbidities, laboratory measurements,
ejection fraction, vital status and demographics to identify similar patients.

9.5. Quantifying the effect of Intervention
Data mining techniques such as association rule mining have been used to measure
the effect of interventions. Statin is an example of a commonly prescribed medication
for patients diagnosed with hypercholesterolemia. Schrom et al. [Schrom et al. 2013a]
used association rule mining along with propensity score matching to identify how the
use of statin leads to overt diabetes in certain sub-populations. The sub-population
consisted of patients diagnosed with hypercholesterolemia. They demonstrated their
technique on a real diabetes data set by examining the relationship between statin
use and T2DM, and identified novel risk factors. Campbell [Campbell 1996] analyzed
a variety of tests and measures that are useful in documenting and quantifying the
outcomes of intervention for persons with cerebral palsy. Proschaska et al. [Prochaska
et al. 2008] analyzed the effects of risky behaviors such as smoking, alcohol abuse,
physical inactivity, and poor diet on human health. Ronsmans and Campbell [Rons-
mans and Campbell 2011] presented the evidence of the effect of health interventions
on mortality reduction from hypertensive diseases in pregnancy. Law et al. [Law et al.
2003] analyzed how statins reduce serum concentrations of low density lipoprotein
(LDL) cholesterol and the incidence of ischemic heart disease (IHD) events and stroke,
according to drug, dose and duration of treatment.

9.6. Constructing Evidence Based Guidelines
Data mining techniques such as association rule mining, sequential rule mining and
regression approaches can be used to develop and test existing guidelines[Liu and Ru-
bin 2012],[Eibling et al. 2014]. EBG’s have been developed for diseases treated in the
emergency department [Agrawal and Kosowsky 2009], medication therapy for upper
respiratory tract infection [Zeng et al. 2014], ear, nose, diabetes mellitus type 2 (T2DM)
[Heselmans et al. 2013], prosthodontics [Bidra 2014], etc. Guidelines might vary across
geographies due to differences in population genetics, life-style and socio-economic sta-
tus. For example, different sets of guidelines have been developed for T2DM by Finland
[Kinnunen-Amoroso 2013] and Singapore[Goh et al. 2014]). Pivovarov et al. [Pivovarov
et al. 2014] analyzed the potential overuse of certain clinical guidelines. In particular
they looked at hemoglobin A1c testing across 119 000 patients and 15 years of hos-
pital records. They also examined the patterns before A1c was included in American
Diabetes Association guidelines. Their study demonstrated over utilization of A1c and
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attributed this to lack of care coordination and point of care tests followed by confir-
matory laboratory tests.

9.7. Adverse Event Detection
Extensive research on ADRs has been performed in the context of cardiovascular
complications, pancreatic complications [Vilar et al. 2012; Harpaz et al. 2013] and
allergies [Epstein et al. ]. Supervised techniques, such as disproportionality analysis,
logistic regression, Bayesian inference and NLP techniques have frequently been used
to discover ADRs [Iyer et al. ; Haerian et al. 2012]. Besides EHR data, some research
has also used weblogs to identify ADRs [White et al. 2013]. Similarly, research has
been conducted using statistical analysis to identify certain medications which lead
to adverse effects [Haerian et al. 2012; White et al. 2013; Coloma et al. 2013]. Bobo
et al. [Bobo et al. 2014] designed an algorithm to identify new or prevalent users
of antidepressant medications via population-based drugs-pescription records and
confirmed that prescription records can be used to identify prevalent or incident
users of antidepressants. Pathak et al. [Pathak et al. 2013c; Shen et al. 2014] used
Semantic Web and Linked Data technologies for identifying potential drug-drug in-
teraction (DDI) information from publicly available resources,and determining if such
interactions were observed using real patient data. Specificially, they analyzed widely
prescribed cardiovascular drugs: Warfarin, Clopidogrel and Simvastatin. Nachimuthu
et al. [Nachimuthu et al. 2010] used them to identify fluctuations in glucose levels
while Rose et al. [Rose et al. 2005] used them for patients admitted for hemodialysis.
Such techniques can lead to a reduction in overall health care costs,access barriers
[Davis et al. 2014; van der Velde et al. 2012], unnecessary hospital admissions,
frequency of primary care visits and improvement in illness prevention and care
co-ordination [Khan et al. 2012].

10. DISCUSSION

Applications Descriptive Cross Sectional Retrospective or Case-Control
Atemporal Temporal Time Agnostic Time Aware

Understanding
the Natural His-
tory of Disease

[Dunteman
1989; Zhang
and Zhang
2002; Cao
et al. 2005;
Holmes
et al. 2011;
Hanauer
et al. 2009]

[Hanauer
and Ra-
makrishnan
; Liao and
Chen 2013;
Hripcsak
and Albers
2013; Sac-
chi et al.
2007; Jin
et al. 2008;
Batal et al.
1994]

[Dasgupta
and Chawla
]

[Nachimuthu
et al. 2010;
Verduijn
et al. 2007;
Batal et al.
2012]
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Cohort Identifica-
tion

[Roque
et al. 2011;
Bauer-
Mehren
et al. 2013]

[Gotz et al.
2014; Schu-
lam et al.
2015]

[Wang
et al. 2013;
Peissig
et al. 2012;
Pathak
et al. 2012;
Nadkarni
et al. 2014]

[Carroll
et al. 2011;
Xu et al.
2011; Sar-
vestani
et al. 2010]

[Albers
et al. 2014]

Risk Predic-
tion/Biomarker
Discovery

[Gotz et al.
2011a; Vel-
lanki et al.
2014]

[Sarkar
et al. 2012;
Letham
et al. 2013;
Ebadollahi
et al. 2010;
Feldman
and Chawla
2014; Ngu-
for et al.
2015; Byrd
et al. 2014]

[Collins
et al. 2011a;
Simon et al.
2011b;
Mani et al.
; Math-
eny et al. ;
Pakhomov
et al. 2011;
Fung et al.
2008; Wells
et al. 2008;
Vinzamuri
et al. 2014;
van der
Heijden
et al. 2014;
Paxton
et al. 2013;
Zhao and
Weng 2011;
Maroco
et al. 2011;
Breault
et al. ; Wang
et al. 2015;
Sun et al.
2014]

[Gatti et al.
2011]

Predicting the
next complication:
What and When

[Westra
et al. 2011;
Skevofi-
lakas et al.
2010;
Oztekin
et al.
2009; Ghal-
wash and
Obradovic ]

[Sandri
et al. 2014;
Vinzamuri
and Reddy
2013; Pee-
len et al.
2010]

Quantifying the
effect of Interven-
tion

[Schrom
et al. 2013a]

Patient Medical
Trajectories

[Wang et al.
2014]

[Ghassempour
et al. 2014]

[Yadav et al.
2015]
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Constructing
evidence based
guidelines

[Pivovarov
et al. 2014]

Adverse Event De-
tection

[Sathyanarayana
et al. 2014;
White et al.
2013; Iyer
et al. ;
Haerian
et al. 2012;
Pathak
et al. 2013a;
Carroll
et al. 2011;
Xu et al.
2011; Bobo
et al. 2014]

Table 1 provides a succinct representation of the major research carried out using
data mining techniques in conjunction with EHRs. The columns in Table-1 represent
the methodologies categorized into groups,which we presented in section 8. The rows
in Table-1 correspond to the major application areas,which we broadly discussed in
section 9. Building on this understanding, we will explore, discuss and present novel
insights about how data mining techniques have been utilized for EHRs. In particular,
we will analyze why certain application areas of EHRs are widely popular and why
other application areas are virtually unexplored. We also discuss why certain data
mining techniques are widely utilized by clinical researchers and the underlying
reasons for such usage. We aim to discuss these aforementioned observations using
our expertise across domains such as computer science, biostatistics and epidemiology.
Lastly, we conclude this section by presenting our views on what we believe the future
holds for data mining in conjunction with EHRs.

A quick glance at Table 1 reveals that substantially more work has been carried
out in retrospective or case-control settings as compared to the descriptive setting.
This difference is not accidental, but rather stems from the nature of research in
the medical domain, as research in medical sciences has hitherto been driven by
pre-defined outcomes. Corroborating this fact, every randomized clinical trial initially
has a well-defined clinical question. Conversely, research carried out in descriptive
settings often leads to the discovery of redundant, simple statistical observations
and widely known facts. This can be attributed to the fact that high dimensionality
and associated heterogeneity of EHR data often lead to increased complexity thereby
requiring large amounts of EHRs data to discover meaningful relationships through
descriptive techniques. With EHRs still in its infancy, existing data repositories are
moderate in size.

Another significant observation from Table 1 is that risk prediction has been widely
explored in the health care industry. In risk analyses, the goal is to compute the
probability of a patient’s progression to an outcome (e.g. T2DM) of interest. The
major reason for this focus is the ease with which such analyses can be performed,
as a plethora of data mining tools and techniques exist. Furthermore, the literature
using such analyses is rich, providing researchers with opportunities to compare
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their findings. Moreover risk analysis is simply the most natural and immediately
impactful application. Another popular application area is understanding the natural
history of the disease. This is attributed to the fact that such areas substantially
overlaps with existing disciplines such as epidemiology. We also observe that there are
certain application areas that are sparsely filled. Examples of such areas as observed
in Table-1 are quantifying the effect of interventions and constructing evidence based
guidelines. This is attributed to the fact that performing research in these areas is
complicated as it requires large interdisciplinary teams and sophisticated techniques.

We also observe that utilizing data mining techniques in certain application areas
are infeasible. Examples include the usage of descriptive data mining techniques for
predicting complications, quantifying the effect of interventions and analyzing adverse
event detections. This can be attributed to the fact that in such research activities
patients are already grouped into cases and controls and therefore such research
activities would be classified as case-control, retrospective or cross-sectional studies.
We also observed that current research activities does not utilize the temporality
associated with EHR data. For example, descriptive atemporal studies are more
frequently conducted as compared to descriptive temporal techniques. Similar is the
case with retrospective or case-control studies. We identified couple of reasons for this
phenomenon. First, the duration of EHR data available with healthcare providers
rarely exceeds couple of years. Diseases such as T2DM take around 5-10 years for
patients to progress from one state to a state of advanced complication. With such a
limited duration of data available, this progression cannot be studied effectively. Sec-
ondly, censoring and irregular EHR data limits the application of several techniques
to EHR data as such techniques often require sophisticated and rigorous study designs.

11. FUTURE OF EHR MINING
The current landscape of health care and the drivers that shape it virtually ensure
that mining EHR data will play an increasingly important role in the future. Major
examples of these drivers include the transition from the current reimbursement-
based health care model to the Accountable Care Organization model; personalizing
care to make it safer, more efficient and to reduce waste; and shared decision making,
patients’ desire to become more involved in their own care. All of these drivers require
strong analytics based on large populations to be successful.

The cornerstone of modern medicine is clinical evidence and generating hypotheses
for clinical evidence is one role that data mining is likely to play. This role is not
a replacement of clinical trials but a synergistic role,where data mining can create
high-quality hypotheses that can be validated through clinical trials. Clinical trials
are expensive, thus the number of patients participating in a study is kept to the
minimum required to validate the hypothesis. Secondary use of such small data sets
for hypothesis generation is impractical, creating an opportunity for mining EHR data.

Even before the broad availability of EHR-based clinical data, large-scale observa-
tional studies over entire populations have been carried out. However, these studies
have typically utilized claims data, which paints a less comprehensive picture of the
patient than EHR (clinical) data. Claims data are recordings of charges from providers
to the insurance companies, including prescriptions, diagnoses and laboratory test
orders; and they do not contain vital signs, patient-provided health information (e.g.
smoking status), the results of the lab tests and even the diagnoses are limited to a
small set of the most costly conditions. Despite the well-documented shortcomings of
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claims data, studies utilizing them exhibit many of the key characteristics of EHR
data, including the intermittent generation of longitudinal data, censoring, confound-
ing and the need for a robust study design. Methods developed for observational
studies are adopted to EHR mining and they form the epidemiological foundation of
EHR mining.

The evolution of EHR data mining will involve the integration of these epidemiolog-
ical concepts with traditional data mining methodologies, developing them further in
many directions.

One of these directions is data representation. EHR data is rich, it consists of
highly heterogeneous data, collected from a wide range of sources (structured and
unstructured clinical data, images, omics data, mobile health) potentially longi-
tudinally at varying frequencies and resolution. The emergence of such data type
heterogeneity necessitates that we revisit even fundamental questions like how data
is best represented for modeling purposes.

Other directions include analyzing temporal and sequence data, handling missing
data, and causal inference. Both data mining and biostatistics/epidemiology have
methods to address these issues but they need to be further developed to suit EHR
data better.

The characteristics of EHR data that drive the development of new data mining
techniques are not unique to EHR data. Heterogeneity is present and poses challenges
in many areas, including earth science and climate; time-to-event data finds its
origins in failure analysis; and censoring along with the intermittent interactions
with customers also happens in customer relationship management and recommen-
dation systems. Mirroring how techniques for censored data and causal inference
are being adopted from biostatistics and epidemiology into clinical data mining, new
developments in EHR mining will likely find applications in many other data mining
and analytics domains.

12. CONCLUSION
Mining healthcare data is an emerging field. Healthcare informatics has a promising
potential as it involves diseases such as T2DM and sepsis, for which better manage-
ment practices still need to be discovered. This potential can be realized by using
knowledge from diverse fields such as Epidemiology, survival analysis and data min-
ing in an interwoven fashion. Intermixing of knowledge and techniques from varying
fields has the potential for spurring development by producing more meaningful
results. This can lead to the development of tailored and personalized treatments. In
this survey, we have discussed different applications for healthcare data and have
attempted to provide an overview of the relevant literature for these applications.
We also described the kind of data encapsulated in EHRs and the unique challenges
associated with it. We then described the three major approaches used in handling
EHRs namely censored data, irregular time series data and handling confounding
via the pseudo outcome model. Using concepts borrowed from epidemiology we then
presented the various study-designs and a comprehensive overview of the literature
related to those study designs. Lastly, we presented our views on the current state of
the art in healthcare informatics and envisioned what needs to be done in the future
to realize the true potential associated with EHR data. We firmly believe that the
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unique nature of the data can contribute to the next epoch in data mining.

13. CASE STUDY: DATA MINING FOR TYPE-II DIABETES MELITUS
Type 2 Diabetes Mellitus (T2DM) is a chronic condition,characterized by chronically
elevated blood sugar levels. T2DM affects approximately 12% of Americans age 20
or older and is the seventh leading cause of death in the United States [Anderson
et al. 2003]. T2DM, unless managed effectively,leads to complications in almost
every body system, including blindness, kidney disease, and various cardio-vascular
complications such as peripheral vascular disease (PVD), Ischemic heart diseases
(IHD), cardio vascular disease (CVD) and congestive heart failure (CHF). Effective
preventive and management techniques through life style changes and therapeutic
interventions exist, hence timely identification of patients at particularly high risk of
developing T2DM or its complications are of paramount importance.

T2DM is part of the metabolic syndrome, a constellation of conditions related to
metabolism. Beside T2DM, the metabolic syndrome contains the above complications
of the diabetes, as well as a number of conditions comoribid to diabetes: high blood
pressure (hypertension; HTN), high cholesterol (hyperlipidemia; HL), atherosclerosis
(plaque build-up in the blood vessels) and abdominal obesity.

In what follows,we will show-case how data mining can be applied towards numer-
ous applications in the context of T2DM and the metabolic syndrome in general. In
these studies,we will describe the entire data mining process starting from raw EHR
data all the way to obtaining meaningful knowledge. Specifically, we highlight some
issues related to the construction of the study cohort,the synthesis of raw EHR data
tables into more meaningful data elements through phenotyping, the transformation
and summarization of EHR and phenotype data into a design matrix amenable to
data mining through various study designs and finally we will highlight how data
mining can utilize the large population samples to extract novel knowledge from the
data. Most of the studies we describe in this section has actually been carried out to
completion, either by us or by other researchers,but some of them are hypothetical,
simply illustrating the possibilities that data mining enables.

For our discussion,we assume a typical EHR data set comprised of tables corre-
sponding to demographics, encounters, diagnoses, laboratory results, vital signs and
medication prescriptions.

Demographic Attributes. This consists of patient attributes such as age, gender,
race, ethnicity, socio-econmic status and tobacco consumption status. These at-
tributes mostly remain static throughout the study period.

Encounters. This contains information related to every patient visit (encounter) to
the healthcare provider. Encounters are often classified as outpatient, inpatient
or emergency. For every encounter, information such as encounter type, admission
date, discharge date and discharge status is stored.

Diagnoses. This consists of information related to newly diagnosed or existing
diseases. For every diagnoses code, information such as the onset date and the date
of cure (if applicable) is stored. Examples of diagnosis codes present in our dataset
include codes of Type 1 and Type 2 DM, and their accompanied complications such
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as ischemic heart disease (IHD), cerebrovascular disease (CVD), chronic kidney
disease (CKD), congestive heart failure (CHF), peripheral vascular disease (PVD),
Diabetic Foot and Ophthalmic complications.

Vitals. This consists of information related to vitals, which are collected for every
encounter. Information such as systolic blood pressure (SBP),diastolic blood pres-
sure (DBP), pulse and body mass index (BMI). Vitals are gathered once for every
outpatient visit, but might be collected frequently (every few hours or minutes) for
inpatient visits, depending upon the patient medical state.

Laboratories test results. For every encounter, we also store information related
with various laboratories tests carried on the patient. For every entry we store
information when the laboratory test result was ordered and entered into the
EHR system. Examples of laboratory tests related with T2DM are hemoglobin
A1c, low-density lipoprotein cholesterol (LDL), high-density lipoprotein cholesterol
(HDL), triglycerides, etc.

Prescriptions. For every encounter,prescription information is also stored in the
EHR. Examples of prescription are life-style modification advises and medications.
For medications, information such as dosage, route, strength, prescription start
date, prescription end date are usually collected.

Cohort construction.
While some clinical questions concern the entire population, most questions need

to be limited to a subset of patients. For example, to determine the prevalence of
T2DM, we can consider the entire population, but to understand the effect of nursing
guidelines [Rydén et al. 2007] we may focus on patients who were hospitalized
and thus exposed to these guidelines. Accidentally including patients who were not
exposed would underestimate the efficacy of the guidelines.

Cohorts are defined using inclusion and exclusion criteria governing which patients
must or must not be included into the study cohort. The goal of cohort construction
is to define inclusion and exclusion criteria such that the resultant cohort allows
to estimate the quantities of interest without bias. In the above example, including
patients without exposure could bias the estimate of the guideline efficacy.

The bias that the criteria may introduce can be obvious or subtle. When estimating
the prevalence of diabetes as a ratio of diabetic patients among all patients at a
provider, accidentally including patients who had died earlier introduces a negative
bias (we underestimate the prevalence). On the contrary, if we were to estimate the
effect of statin on mortality, we may require that patients had been taking statin for
at least half a year to ensure that statin took effect. This introduces immortality bias
[Lévesque et al. 2010], since we excluded all patients who may have died in the first
half year of statin exposure and possible overestimate the beneficial effect of statin use.

In studying the effect of risk factors in diabetes,a more subtle kind of bias can aries
from including patients who have a different mechanism of diabetes. For example
one can reasonably argue that T2DM, formerly known as late onset diabetes, has a
different mechanism in children than in adults; or investigators routinely exclude
patients with gestational diabetes, a transient form of diabetes during pregnancy, for
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the possibility that it may have a different disease mechanism.

For these reasons, our study, we exclude children, do not include gestational diabetes
and do not require a minimal set exposure time when we measure mortality.

Phenotyping. The first step in the analysis is to accurately define the clinical
conditions of interest, in other words to define the disease phenotypes of interest. We
illustrate this process through the example of T2DM, but all other conditions should
be defined analogously.

The most obvious way to identify patients with T2DM is to use diagnosis codes.
There are multiple ICD-9 codes associated with T2DM depending on its severity
(controled/uncontroled) and possible complications. Predefined groups of codes, such
as the Clinical Classification Software [Elixhauser et al. 2008], corresponding to
diseases exist,and can be used to identify patients regardless of disease severity and
complications. Identifying patients based on diagnosis codes is imperfect. A recent
large multi-site study has shown that T2DM phenotype defined solely by diagnosis
codes can only achieve 86.6% precision and 96.9% recall [Li et al. 2013].

Another important goal for phenotyping is to harmonize disease definitions across
time. The clinical criterion for diabetes has changed [Wareham and ORahilly 1998]
thus the same diagnosis code (of T2DM) referred to a slightly different condition in the
early 1990s than today. Beside the changing criterion, the laboratory tests for estab-
lishing diabetes are changing, improving. Today,the primary test for measuring blood
sugar levels is hemoglobin a1c, while a mere decade earlier is was primarily fasting
plasma glucose, a laboratory test with substantially higher variability. Therefore, for
a longitudinal study, we have to cope with the difficulty that the same condition may
have to be defined using different synonymous laboratory tests of varying accuracy.

Finally,phenotyping algorithms can help overcome challenges posed by missing
data. For example, we may not have the opportunity to see the laboratory test results
that established T2DM for a particular patient, either due to (left) censoring or to
fragmentation, but the presence of a diagnosis code or T2DM medications can provide
reliable indications of diabetes.

Phenotyping algorithms thus combine evidence from multiple data sources, diagno-
sis codes, laboratory results and medications, to achieve the accuracy required by the
study. Phenotyping algorithms can be hand-crafted or machine learned and examples
of T2DM phenotyping algorithms include [Conway et al. 2011; Li et al. 2013; Chen
et al. 2013].

It is also worth pointing out that even the most straightforward condition, mortality,
is typically not directly available from EHR. If a patient died in the hospital,his
discharge status will contain this information; however, if he died outside the hospital,
his death information may not be readily available from the EHR. If mortality
is of interest, researchers need to ascertain the patients’ vitality status by consult-
ing the state’s population center, the state death registry or the national death registry.

Study Design
The phenotyping algorithms can be used to augment the raw EHR data with data
elements that synthesize information from disparate sources and harmonize disease
definition across time. The application of phenotyping algorithms to the raw EHR data
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(and possibly other auxiliary data) results in longitudinal data indicating whether a
phenotype is confirmed, can be ruled out or cannot be established for a patient at each
point in time when the patient was under observation.

For data mining algorithms to be applicable to EHR data,these tables and the
phenotyping data need to be integrated and possibly summarized over time into a
single design matrix. The way the design matrix is constructed is dictated by the
study design, and in return, the study design constrains the applicable data mining
approaches and techniques and can limit or enable certain kinds of knowledge to be
extracted. For this reason, we organize the remainder of this section based on study
design, presenting examples using descriptive, cross-sectional and cohort studies
briefly showing how the study design drives the creation of the design matrix and how
it allows the extraction of novel knowledge.

13.1. Descriptive Analysis
Descriptive studies typically represent the first forays into exploring a condition,but
can also provide useful epidemiological information about diseases and thus about
population health, trends in population health, thereby driving policy decisions. The
Center for Disease Control and Prevention (CDC) conducts numerous descriptive
analyses, annually reporting the prevalence, incidence rate and trends in diseases
that represent major health care concerns, having raised attention to the growing
obesity epidemic and the subsequent increase in T2DM incidence rates.

Determining prevalence and incident rates in a population of patients appears
deceivingly simple, however, care must be taken with EHR data. To measure the
prevalence of diabetes,we take a cross-section of the target population at a particular
point in time. Prevalence is the ratio of patients who has T2DM among all patients
in that target population. Phenotyping algorithms can help overcome EHR issues
related to determining whether a patient has T2DM or not, but estimating the size of
the target population can remain problematic. The biggest problem is selection bias.
Healthy patients who require care infrequently, may not have visited the provider
during the time period of the cross-section and thus we may not know whether
they are still part of the target population or not—they may have moved out of the
catchment area of the provider. Whether a patient is part of the target population
may be difficult to determine for the frail and the elderly, because vitality status is not
necessarily available from the EHR directly.

Computing incidence rates, which are the number newly diagnosed patients during
a time period divided by all patients eligible for the study during that time period,
is further complicated by the need of determining whether a condition is new or
pre-existent. Phenotyping algorithms can help mitigate this problem, but we can still
only estimate the number of incident T2DM events rather than count them.

13.2. Comorbidity Analysis through Cross-Sectional Design
Comorbidity analysis is the process of exploring and analyzing relationships between
frequently co-occurring diseases. For example,patients diagnosed with T2DM have
often accompanied diseases such as hypertension, hyperlipidemia and impaired
fasting glucose (IFG). In the aforementioned example,T2DM is an referred as the
index disease and hypertension, hyperlipidemia and IFG are collectively known as
co-occurring diseases. T2DM in conjunction with hypertension and hyperlipidemia
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are known as multiple chronic conditions (MCC). MCC’s are an issue of growing
significance in T2DM as they are highly prevalent and might increase disease burden
and costs. Exploring and analyzing such MCC clusters will lead to development of
tailored medical interventions.

The fundamental epidemiological metrics we computed above give a concise descrip-
tion of the health of the population and influences policy decisions, but applying data
mining to it can extract deeper knowledge. In the face of an aging US population and
the rapidly growing concern of multiple chronic conditions, comorbidity analysis can
help describe diabetic populations in terms of comorbidities related to the metabolic
syndrome, interactions among these comorbidites and estimate the prevalence and
incidence rates in subpopulations defined by these chronic conditions.

The goal of this study is to identify frequently co-occurring diseases and define
sub-populations based on these co-occurring diseases. Further we estimate the risk
of mortality associated with each subpopulation. As this is a cross-sectional study
design, we define exposure and outcome at one time point. In this study, the exposure
characterized by the set of comorbidities and the outcome is defined by mortality.
Using this nomenclature, we estimate the prevalence of mortality within each sub-
population. We also compare analyze how the risk varies across sub-populations.

We applied frequent pattern mining to identify frequently co-occuring comorbidities
and identified patient subpopulations who are diagnosed with these comorbidities
(and possibly others). In each subpopulation we measure how many patients succumb
to death (adjusted for age and gender) and use the Poisson test to identify subpopula-
tions wherein the prevalence of mortality is significantly higher (or lower) than in the
general population. To estimate the risk, we use Cox proportional hazards regression
along with martingale residuals.

As an illustration,in the figure below we consider T2DM along with two other
comorbid diseases i.e. hypertension and hyperlipidemia. We analyze the risk asso-
ciated with mortality for these comorbid diseases. As observed, risk for mortality
associated with hypertension and hyperlipidemia is 1.13. It indicates that the patients
diagnosed with hypertension and hyperlipidemia are 13% more prone to mortality as
compared to patients with no disease. Similarly we also observe how risk increases
when a patient is diagnosed with multiple diseases. The study identified a number
of subpopulations with significantly elevated prevalence of diabetes. With increasing
number of comorbid conditions typically, the prevalence of mortality increases, unless
the combination in questions carries a particularly high risk of mortality. The increase
in risk appears non-additive, suggesting interaction among the conditions under
study. This is not surprising given that these conditions collectively are indicative of
the patients’ metabolic health.

Risk prediction for events of interest is usually performed using data mining tech-
niques such as predictive modeling. Primarily,predictive modeling has two goals i.e.
estimating the risk or identifying the underlying risk factors. For example, risk can be
estimated for events such as mortality, CVD, IHD and PVD. For such estimation age,
gender, race and ethnicity are the usual predictors. Data mining in EHRs also enables
subpopulation mining, which helps to to build clinical decision support systems for
individualized or personalized medicine. As we have already discussed that in in a
cross-sectional study, we can estimate the prevalence of a disease in a population (or
in well-defined subpopulations) and we can identify conditions (comorbidities) that
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frequently co-occur with the disease of interest. Co-occurrence is the weakest form of
association; it does not even guarantee that ”exposure”, the development of a comorbid
condition, precedes the index condition (T2DM). In a cohort study, a patient cohort is
defined along with their exposures, the cohort is then followed recording outcomes of
interest. This design ascertains that the exposure precedes the outcome and it also
suggests that the outcome is an incident (not pre-existing) condition. Through cohort
studies, we identify exposures that are predictive of the outcome, an application of
data mining know as biomarker discovery, and predict the risk of the outcome (risk
estimation). In this subsection, we would be exploring various risk estimation models
such as framingham score, estimating T2DM risk in subpopulations and developing
risk trajectories over time using cohort study designs.

13.2.1. Framingham Score. Let us start our discussion of cohort studies towards risk
estimation with the venerable Framingham Diabetes Score [Wilson et al. 2007] The
Framingham Diabetes Score is a clinical tool for assessing patients’ risk of developing
diabetes based on a small number of risk factors: fasting blood sugar, high cholesterol,
high blood pressure, medication for high blood pressure, familial history of diabetes,
and obesity. For each risk factor the patient presents with, he receives a predetermined
number of points. The points are tallied up and whether preventive intervention is
required and the aggressiveness of the intervention is determined based on the tallied
score.

In this study they estimated the 7-year risk of T2DM in middle-aged participants
who had an oral glucose tolerance test at baseline. As this is a cohort study design,
patients are selected based on whether they did not acquire T2DM at baseline
and are usually followed for a couple of years to analyze the outcome. Patients
who used oral hypoglycemic medications or insulin, or who had a baseline fasting
plasma glucose level greater than 126 mg/dL or a baseline post-OGTT plasma glucose
level greater than 200 mg/dL were categorized as having diabetes and thus were
not included in the study. Patients were followed up from baseline for an average
follow-up of 7 years. Such study designs helps in analyzing the incidence rate of T2DM.

New cases of diabetes were identified using the examination visit date as a date
of diagnosis; otherwise follow-up was censored at the last follow-up (examination 6
or 7) for patients remaining non-diabetic. They used logistic regression models to
predict incident diabetes and estimated the odds ratio and 95% confidence intervals
to estimate relative risk. Cox proportional hazards models was also used to account
for censoring. The significant predictors identified from Cox and logistic models were
similar.

They observed how parental diabetes, obesity and metabolic syndrome traits effec-
tively predict T2DM risk in a middle-aged white population sample. They observed
how information beyond personal awareness of diabetes risk factors is important to
determine risk of T2DM. They presented how parental history of diabetes and obesity
remained significant predictors, along with hypertension,low levels of high-density
lipoprotein cholesterol, elevated triglyceride levels, and impaired fasting glucose
findings. Given the importance of identifying patients at high risk of diabetes, many
risk scores have been proposed [Collins et al. 2011b], but the Framingham score is the
one with widest acceptance in clinical practice.
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13.2.2. Diabetes Risk Prediction in Subpopulations. Clinical acceptance of the Framing-
ham Diabetes Score is in large part due to its effectiveness (it has been validated
empirically and formally [Wilson et al. 2007] ) and its ease of application. Its ease of
application stems in large part from its approach of fitting a single model with few
variables to an entire cohort,assuming homogeneity of effect across the population. In
Section 13.2, we have shown through comorbidity analysis, that the comorbidities in
diabetes interact. In the current study, we repeat the previous analysis using cohort
study so that we can estimate diabetes risk through incident rates.

The cohort study design was applied in this study. Similarly to the cross-sectional
design, a cross section was taken at a particular point in time, called the baseline.
Demographic information (age, gender) and social history (smoking status) were
determined at baseline and same comorbidities as before were ascertained retrospec-
tively over 5 years. Patients were followed forward until 2014 and the study endpoint
(outcome) was incident T2DM. Patients less than 18 years of age and patients
presenting with T2DM at baseline were excluded. The latter condition ensures that
all diabetes events during the follow-up period are incident (new) T2DM diagnoses.

The analysis itself mirrors that of the comorbidity analysis described earlier.
Survival association rule mining [Simon et al. 2013b] was applied to discover sub-
populations adjusted for age,gender and follow-up time and subpopulations with
increased risk of developing diabetes (i.e. incidence rate) were identified. Confounding
from age and gender were handled through survival regression, which is an integral
part of survival association rule mining. Unlike results from the cross-sectional design,
results from this study allow us to claim that certain combinations of comorbidities
are associated with higher risk of developing diabetes.

13.2.3. Quantifying the Effect of Statin. We have so far utilized data mining to identify
subpopulations with significantly elevated prevalence and incidence rate of diabetes.
Subpopulation mining is not limited to mining outcomes, it can also be used to
discover important differences in the effects of interventions.

Recent changes in guidelines for preventing cardio-vascular mortality are expected
to substantially increase the utilization of statins,a class of cholesterol lowering agent.
Statins have been previously proven to reduce the risk of cardio-vascular mortality,but
have been shown to increase the risk of diabetes by 9% in patients with normal blood
sugar levels. Controversy surrounds the effect of statins in patients with prediabetes,
a condition defined by slightly elevated sugar levels that do not reach diabetic levels
[Macedo et al. 2014] Most studies have found statin to have no effect on progression to
overt diabetes,some found it to be beneficial [Taylor et al. 2013] and some found it to
be detrimental [Rajpathak et al. 2009].

We hypothesize that prediabetes is heterogeneous: in some subpopulation,the effect
of statin is beneficial, in others it is detrimental and thus the combined effect depends
on the composition of the population. In this section, we describe a study [Schrom
et al. 2013b] that investigated the effect of statin in various subpopulations. A unique
strength of this study is its importance in ascertaining subpopulations where the
effect of statin is detrimental. We illustrate this process by using rigorous data mining
techniques.
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As this is a cohort study design, patients were selected at baseline and were followed
for a couple of years to analyze the outcome. Patients were divided into treatment
and control on the basis of whether they received statin or not. The groups were then
followed for 5 years to estimate the incidence of T2DM. Such study designs help to
examine the relationship between statin use and diabetes thereby helping to identify
risk and novel protective factors.

We illustrate this process by using Association rule mining (ARM) framework in
conjunction with propensity score matching techniques. Primarily, ARM was used
to identify subpopulations where the effect of statins differ among subpopulations.
Statistically appealing techniques such as propensity score matching was used to
handle subtle biases and confounding arising due to attributes such as age and gender.
Such techniques aim at eliminating the likelihood of bias and errors.

They discovered how statins substantially increase the risk of diabetes by 13% -
41% among various subpopulations. They discovered several interesting associations
such as patients diagnosed with hyperlipidemia, a prescription for a non-statin anti-
hyperlipidemia medication, and either obesity or treated and controlled hypertension,
also receiving statins tends to lower their risk of developing diabetes. Identifica-
tion of such rules are also interesting as they are easily interpretable and could be
quickly incorporated into clinical practice using computer based decision support tools.

13.2.4. Trajectory Mining for Diabetes Complications. Analogous to our last study, the
focus of this study is also on T2DM. Multiple studies have indicated that T2DM
is often associated with several complications. Primarily,we consider seven major
complications associated with diabetes: obesity (OB), ischemic heart disease (IHD),
cardiovascular disease (CVD), peripheral vascular disease (PVD), cerebrovascular
disease (CVD), chronic kidney disease (CKD), congestive heart failure (CHF), diabetic
foot and ophthalmic conditions. These complications were identified by several re-
search studies which dominate the literature. These complications usually stem from
mismanagement of patient’s health.

The aim of this case study is to analyze the risk associated with diabetes induced
complications and to ascertain whether the risk changes over time. Risk can be
concisely described as the probability of a subject diagnosed with T2DM progressing
to a T2DM induced complication. Such analysis is also amenable for development of
novel EBP (Evidence Based Guidelines) guidelines as existing EBP guidelines neither
consider the patient’s trajectory nor the patient’s sequence of events that lead up to
the patient’s current conditions.

In what follows, we will illustrate how patient’s risk of progressing to advanced
complications depends on their present conditions. Specifically, we highlight how such
analysis becomes more relevant in a heterogeneous disease such as T2DM, where
in complications affect majorly all body organs. This case study provides a logical
sequence from the computation of a risk score to analyzing trajectories over time. It
provided a snapshot of first foray into exploring T2DM associated complications over
time.

As this is a cohort study design, patients diagnosed with T2DM at baseline (expo-
sure) were followed for a couple of years to analyze the outcome (patient’s progression
to advanced complications). Patients were selected at baseline, if they satisfied the
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following two conditions: if they had type 1 or type 2 DM at baseline as identified by
the billing transactions and two A1c results at least 6 months apart after baseline.
Patients were then followed until a maximum period of 5 years or censoring or
mortality (whichever occurs first) to estimate the incidence of T2DM accompanied
complications. These constraints ensured that sufficient clinical information was
available about the patient.

They first summarize the patient’s condition pertinent to diabetes mellitus Type-2
(T2DM) into a single score using a complication index. For every complication, a
Cox proportional hazards model where in demographics, laboratories test results,
vitals and remaining complications are treated as the independent variables and the
complication of interest as the dependent variable. Each of the individual regression
models (one for each complication) provided an estimate of the coefficients,which
can be interpreted as the relative risk of developing the complication of interest.
These individual regression models enable the computation of Diabetes Mellitus
Complication Index (DMCI) index which can be thought of as approximately 7 times
the relative risk a patient faces in developing a complication. DMCI can be considered
as a snapshot of patient’s risk. Trajectories per complication were built by averaging
the risk of patients who were diagnosed with the complication of interest. Trajectories
were created using appealing statistical approaches such as spline regression and
lowness estimators.

They illustrated how certain subpopulations have different risk at baseline and
how certain subpopulations have substantial increase of risk in the follow up years.
They also presented how different complications have varying risks of developing
additional complications. For example, patients diagnosed with diabetic foot have
an elevated risk of developing secondary complications. They mentioned that these
patient subpopulations differ not only in their risk but also in the temporal behavior
of their risk. Lastly they observed how when patients are stratified within the same
subpopulation by their baseline risk, they exhibit different trajectories. Their findings
lay stress on how timely analysis can help to prevent or delay the onset of accompanied
complications thereby mitigating the effect of such complications on patient’s health.
However, the archives heel is that the research was carried out using only one dataset.
Nonetheless the findings were insightful and can be validated across institutions
using interoperable nature of EHR data.
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