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ABSTRACT
Our aging population increasingly suffers from multiple chronic
diseases simultaneously, necessitating the comprehensive treat-
ment of these conditions. Finding the optimal set of drugs
for a combinatorial set of diseases is a combinatorial pattern
exploration problem. Association rule mining is a popular
tool for such problems, but the requirement of health care
for finding causal, rather than associative, patterns renders
association rule mining unsuitable. To address this issue, we
propose a novel framework based for extracting causal rules
from observational data, correcting for a number of com-
mon biases. Specifically, given a set of interventions (e.g.
medications) and a set of items (e.g. diseases) that define
subpopulations (e.g. people diagnosed with a set of dis-
eases), we wish to find all subpopulations in which effective
intervention combinations exist and in each such subpopula-
tion, we wish to find all intervention combinations such that
dropping any intervention from this combination will reduce
the efficacy of the treatment. A key aspect of our framework
is the concept of closed intervention sets which extend the
concept of quantifying the effect of a single intervention to
a set of concurrent interventions. Closed intervention sets
also allow for a pruning strategy that is strictly more efficient
than the traditional pruning strategy used by the Apriori al-
gorithm for identifying frequent patterns. To implement our
ideas, we introduce and compare five methods of estimating
causal effect from observational data and rigorously evalu-
ate them on synthetic data to mathematically prove (when
possible) why they work. We also evaluated our causal rule
mining framework on the Electronic Health Records data
of a large cohort of patients from Mayo Clinic and showed
that the patterns we extracted are sufficiently rich to explain
the controversial findings in the medical literature regarding
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the effect of a class of cholesterol drugs on Type-II Diabetes
Mellitus.
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1 Introduction
Effective management of human health remains a major so-
cietal challenge as evidenced by the rapid growth in the num-
ber of patients with multiple chronic conditions. Type-II
Diabetes Mellitus (T2DM), one of those conditions, affects
25.6 million (11.3%) Americans of age 20 or older and is
the seventh leading cause of death in the United States [1].
Effective treatment of T2DM is frequently complicated by
diseases comorbid to T2DM, such as high blood pressure,
high cholesterol, and abdominal obesity. Currently, these
diseases are treated in isolation, which leads to wasteful du-
plicate treatments and suboptimal outcomes. The recent
rise in the number of patients with multiple chronic condi-
tions necessitates comprehensive treatment of these condi-
tions to reduce medical waste and improve outcomes.

Finding optimal treatment for patients who suffer from
multiple associated diseases, each of which can have mul-
tiple available treatments is a complex problem. We could
simply use techniques based on association, but a reasonable
algorithm would likely find that the use of a drug is associ-
ated with some unfavorable outcome. This does not mean
that the drug is harmful; in fact in many cases, it simply
means that patients who take the drug are sicker than those
who do not and thus they have a higher chance of the unfa-
vorable outcome. What we really wish to know is whether
a treatment causes an unfavorable outcome, as opposed to
being merely associated with it.

The difficulty in quantifying the effect of interventions on
outcomes stems from subtle biases. Suppose we wish to
quantify the effect of a cholesterol-lowering agent, statin, on
diabetes. We could simply compare the proportion of dia-
betic patients in the subpopulation that takes statin and the
subpopulation that does not and estimate the effect of statin
as the difference between the two proportions. This method
would give the correct answer only if the statin-taking and
non-statin-taking patients are identical in all respects that



influence the diabetes outcome. We refer to this situation
as treated and untreated patients being comparable. Unfor-
tunately, statin taking patients are not comparable to non-
statin-taking patients, because they take statin to treat high
cholesterol, which by and in itself increases the risk of dia-
betes. High cholesterol confounds the effect of statin. Many
difference sources of bias exist, confounding is just one of the
many. In this manuscript, we are going to address several
different sources of bias, including confounding.

Techniques to address such biases in causal effect estima-
tion exist. However, these techniques have been designed to
quantify the effect of a single intervention. In trying to apply
these techniques to our problem of finding optimal treatment
for patients suffering from varying sets of diseases, we face
two challenges.

First, patients with multiple conditions will likely need
a combination of drugs. Quantifying the effect of multi-
ple concurrent interventions is semantically different from
considering only a single intervention. The key concept in
estimating the effect of an intervention is comparability : to
estimate the effect of intervention, we need two groups of
patients who are identical in all relevant aspects except that
one group receives the intervention and the other group does
not. For a single intervention, the first group is typically the
sickest patients who still do not get treated and the second
group consists of the healthiest patient who get treatment.
They are reasonably in the same state of health. However,
when we go from a single intervention to multiple interven-
tion and try to estimate their joint effect, comparability no
longer exists. A patient requiring multiple simultaneous in-
terventions is so fundamentally different from a patient who
does not need any intervention that they are not compara-
ble.

The other key challenge in finding optimal intervention
sets for patients with combinatorial sets of diseases is the
combinatorial search space. Even if we could trivially extend
the methods for quantifying the effect of a single interven-
tion to a set of concurrent interventions, we would have to
systematically explore a combinatorially large search space.
The association rule mining framework [2] provides an ef-
ficient solution for exploring combinatorial search spaces,
however, it only detects associative relationships. Our in-
terest is in causal relationships.

In this manuscript, we propose causal rule mining, a frame-
work for transitioning from association rule mining towards
causal inference in subpopulations. Specifically, given a set
of interventions and a set of items to define subpopulations,
we wish to find all subpopulations in which effective inter-
vention combinations exist and in each such subpopulation,
we wish to find all intervention combinations such that drop-
ping any intervention from this combination will reduce the
efficacy of the treatment. We call these closed intervention
sets, which are not be confused with closed item sets. As
a concrete example, interventions can be drugs, subpopula-
tions can be defined in terms of their diseases and for each
subpopulations (set of diseases), our algorithm would return
effective drug cocktails of increasing number of constituent
drugs. Leaving out any drug from the cocktail will reduce
the efficacy of the treatment. Closed intervention sets allow
us to go from estimating a single intervention to multiple
interventions.

To address the exploration of the combinatorial search
space, we propose a novel frequency-based anti monotonic

pruning strategy enable by the closed intervention set con-
cept. The essence of antimonotonic property is that if a set
I of interventions does not satisfy a criterion, none of its
supersets will. The proposed pruning strategy based on the
closed intervention is strictly more efficient than the tradi-
tional pruning strategy used by the Apriori algorithm [2] to
identify frequent patterns.

Underneath our combinatorial exploration algorithm, we
utilize the Rubin-Neyman model of causation [3]. This model
sets two conditions for causation: a set X of interventions
causes a change in Y iff X happens before Y and Y would be
different had X not occurred. The unobservable outcome of
what would happen had a treated patient not received treat-
ment is a potential outcome and needs to be estimated. We
present and compare five methods for estimating these po-
tential outcomes and describe the biases these methods can
correct.

Typically the ground truth for the effect of drugs is not
known. In order to assess the quality of the estimates, we
conduct a simulation study utilizing five different synthetic
data set that introduce a new source of bias. We also eval-
uate the effect of the bias on the five proposed methods
underscoring the statements with rigorous proofs when pos-
sible.

We also evaluate our work on a real clinical data set from
Mayo Clinic. We have data for over 52,000 patients with 13
years of follow-up time. Our outcome of interest is 5-year
incident T2DM and we wish to extract patterns of interven-
tions for patients suffering from combinations of common
comorbidities of T2DM. First, we evaluate our methodology
in terms of the computational cost, demonstrating the effec-
tiveness of the pruning methodologies. Next, we evaluate the
patterns qualitatively, using patterns involving statins. We
show that our methodology extracted patterns that allow us
to explain the controversial patterns surrounding statin [4].

Contributions. (1) We propose a novel framework for ex-
tracting causal rules from observational data correcting for
a number of common biases. (2) We introduce the concept
of closed intervention sets to extend the concept of quan-
tifying the effect of a single intervention to a set of con-
current interventions sidestepping the patient comparability
problem. Closed intervention sets also allow for a pruning
strategy that is strictly more efficient than the traditional
pruning strategy used by the Apriori algorithm [2] for finding
frequent sets. (3) We compare five methods of estimating
causal effect from observational data that are applicable to
our problem and rigorously evaluate them on a real clinical
data. We also evaluate them on synthetic data to mathe-
matically prove (when possible) why they work.

2 Related Work
Causation has received substantial research interest in many
areas. In computer science, Pearl [5] and Rosenbaum[6]
laid the foundation for causal inference, upon which several
fields, cognitive science, econometrics, epidemiology, philos-
ophy and statistics have built their respective methodologies
[7, 8, 9].

At the center of causation is a causal model. Arguably,
one of the earliest and popular models is the Rubin-Neyman
causal model [3]. Under this model X causes Y , if X occurs
before Y ; and without X, Y would be different. Beside
the Rubin-Neyman model, there are several other causal
models, including the Granger causality [10] for time se-



ries, Bayes Networks [11], Structural Equation Modeling [8],
causal graphical models [12], and more generally, probabilis-
tic graphical models [13]. In our work, we use the potential
outcome framework from the Rubin-Neyman model and we
use causal graphical models to identify and correct for bi-
ases.

Causal graphical models are tools to visualize causal re-
lationships among variables. Nodes of the causal graph are
variables and edges are causal relationships. Most methods
assume that the causal graph structure is a priori given, how-
ever, methods have been proposed for discovering the struc-
ture of the causal graph [14, 15]. In our work, the structure
is partially given: we know the relationships among groups
of variables, however we have to assign each variable to the
correct group based on data.

Knowing the correct graph structure is important, because
substructures in the graph are suggestive of sources of bias.
To correct for biases, we are looking for specific substruc-
tures. For example, causal chains can be sources of overcor-
rection bias and ”V”-shaped structures can be indicative of
confounding or endogenous selection bias [9]. Many other
interesting substructures have been studied [16, 17, 18]. In
our work, we consider three fundamental such structures:
direct causal effect, indirect causal effect and confounding.
Of these, confounding is the most severe and received the
most research interest.

Numerous methods exist to handle confounding, which
includes propensity score matching (PSM) [19], structural
marginal models [9] and g-estimation [8]. The latter two
extend PSM for various situations, for example, for time-
varying interventions [9].

Propensity score matching is used to estimate the effect
of an intervention on an outcome. The propensity score is
the propensity (probability) of a patient receiving the inter-
vention given his baseline characteristics and the propensity
score is used to create a new population that is free of con-
founding. Many PSM techniques exist and they typically
differ in how they use the propensity score to create this
new population [20, 21, 22, 23].

Applications of causal modeling is not exclusive to social
and life sciences. In data mining, Lambert et al. [24] investi-
gated the causal effect of new features on click through rates
and Chan et al. [25] used doubly robust estimation tech-
niques to determine the efficacy of display advertisements.

Even extending association rules mining to causal rule
mining has been attempted before [26, 27, 28]. Li et al.
[26] used odds ratio to identify causal patterns and later ex-
tended their technique [28] to handle large data set. Their
technique, however, is not rooted in a causal model and
hence offers no protection against computing systematically
biased estimates. In their proposed causal decision trees
[29], they used the potential outcome framework, but still
have not addressed correction for various biases, including
confounding.

3 Background: Association Rule Mining
We first briefly review the fundamental concepts of associ-
ation rule mining and extend these concepts to causal rule
mining in the next section. Consider a set I of items, which
are single-term predicates evaluating to ‘true’ or ‘false’. For
example, {age > 55} can be an item. A k-itemset is a set
of k items, evaluated as the conjunction (logical ’and’) of
its constituent items. Consider a dataset D = { d1, d2.....dn

}, which consists of n observations. Each observation, de-
noted by dj is a set of items. An itemset I = i1, i2, . . . , ik
(I ⊂ I) supports an observation dj if all items in I evaluate
to ‘true’ in the observation. The support of I is the frac-
tion of the observations in D that support I. An itemset
is frequent if its support exceeds a pre-defined minimum
support threshold.

A association rule is a logical implication of form X ⇒ Y ,
where X and Y are disjoint itemsets. The support of a rule
is support(XY ) and the confidence of the rule is

conf(X ⇒ Y ) =
support(XY )

support(X)
= P(Y |X).

4 Causal Rule Mining
Given an intervention itemset X and an outcome item
Y , such that X and Y are disjoint, a causal rule is an impli-
cation of form X → Y , suggesting that X causes a change
in Y . Let the itemset S define a subpopulation, consist-
ing of all observations that support S. This subpopulation
consists of all observations for which all items in S evalu-
ate to ‘true’. The causal rule X → Y |S implies that the
intervention X has causal effect on Y in the subpopulation
defined by S. The quantity of interest is the causal effect,
which is the change in Y in the subpopulation S caused by
X. We will formally define the metric used to quantify the
causal effect shortly.

Rubin-Neyman Causal Model. X has a causal effect
on Y if (i) X happens earlier than Y and (ii) if X had not
happened, Y would be different [3].

Our study design ensures that the intervention X precedes
the outcome Y , but fulfilling the second conditions requires
that we estimate the outcome for the same patient both
under intervention and without intervention.

Potential Outcomes. Every patient in the dataset has two
potential outcomes: Y0 denotes their outcome had they not
had the intervention X; and Y1 denotes the outcome had
they had the intervention. Typically, only one of the two po-
tential outcomes can be observed. The observable outcome
is the actual outcome (denoted by Y ) and the unobservable
potential outcome is called the counterfactual outcome.

Using the definition of counterfactual outcome, we can
now define the metric for estimating the change in Y caused
by X. Average Treatment response on the Treated
(ATT) is a widely known metric in the causal literature and
is computed as follows:

ATT(X → Y |S) = E[Y1 − Y0]X=1 = E[Y1]X=1 − E[Y0]X=1,

where E denotes the expectation and the X = 1 in the sub-
script signals that we only evaluate the expectation in the
treated patients (X = 1).

ATT aims to compute an average per-patient change caused
by the intervention. Y0 = Y1, indicates that the intervention
resulted in no change in outcome for the patient.

Biases. Beside X, numerous other variables can also exert
influence over Y , leading to biases in the estimates. To
correct for these biases, we have correctly account for these
other effects. The quintessential tool for this purpose is the
causal graph, depicted in Figure 1. The nodes of this graph
are sets of variables that play a causal role and edges are
causal effects. This is not a correlation graph (or dependence
graph), because for example, U and Z are dependent given
X, yet there is no edge between them.



Variables (items in I) can exert influence on the effect of
X on Y in three way: they may only influence X, they may
only influence Y or them may influence both X and Y . Ac-
cordingly, variables can be categorized into four categories:

V are variables that directly influence Y and thus have di-
rect effect on Y;

U are variables that only influence Y through X and thus
have indirect effect on Y;

Z are variables that influence both X and Y and are called
confounders; and finally

O are variables that do not influence either X or Y and
hence can be safely ignored.

Figure 1: Rubin-Neyman Causal Model

Most of the causal inference literature assumes that the
causal graph is known and true. In other words, we know
apriori which variables fall into each of the categories, U ,
Z, V and O. In our case, only X and Y are specified and
we have to infer which category each other variable (item)
belongs to. Since this inference relies on association (de-
pendence) rather than causation, the discovered graph may
have errors, misclassifications of variables into the wrong
category. For example, because of the marginal dependence
between U and Y , variables in U can easily get misclassi-
fied as Z. Such misclassifications do not necessarily lead to
biases, but they can cause loss of efficiency.

Problem Formulation. Given a data set D, a set S of
subpopulation-defining items, a set X of intervention
items, a minimal support threshold θ and a minimum effect
threshold η, we wish to find all subpopulations S (S ⊂ S)
and all interventions X (X ⊂ X ), X and S are disjoint, such
that the causal rule X → Y |S is frequent and its intervention
set X is closed w.r.t. our metric of causal effect, ATT.

Note that the meaning of θ, the minimum support thresh-
old, is different than in association rule mining literature.
Typically, rules with support less than θ are considered un-
interesting, in other cases, it is simply a computational con-
venience, but in our case, we set θ to a minimum value such
that ATT is estimable for the discovered patterns.

We call a causal rule frequent iff its support exceeds the
user-specified minimum threshold θ

support(X → Y |S) = support(XY S) = P(XY S) > θ

and we call an intervention set X closed w.r.t. to ATT iff

∀x ∈ X, |ATT (x→ Y |S,X\x)| > η,

where η is the user-specified minimum causal effect thresh-
old. In other words, a causal rule is closed in a subpopu-
lation, if its (absolute) effect is greater than any of its sub-
rules.

Example. In a medical setting, X may be drugs, S could
be comorbid diseases. Then X is a drug-combination that
hopefully treats set of diseases S. This set of drugs being
closed w.r.t. ATT means that dropping any drug from X
will reduce the overall efficacy of the treatment; the patient
is not taking unnecessary drugs.

An itemset is closed if its support is strictly higher than
all of its subitemsets’. Analogously, an intervention set is
closed if its absolute causal effect is strictly higher than all
of its subitemsets’.

5 Frequent Causal Pattern Mining Algorithm
We can now present our algorithm for causal pattern mining.
At a very high level, the algorithm comprises of two nested
frequent pattern enumeration [30] loops. The outer loop
enumerates subpopulation-defining itemsets S using items
in S, while the inner loop enumerates intervention combi-
nations using items in X \ S. More generally, X and S can
overlap but we do not consider that in this paper. Effective
algorithms to this end exists [31, 32], we simply use Apriori
[2].

Once the patterns are discovered, the ATT of the interven-
tions are computed, using one of the methods from Section
6 and the frequent, effective patterns are returned.

On the surface, this approach appears very expensive,
however several novel, extremely effective pruning strategies
are possible and we describe them below.

Potential Outcome Support Pruning. Let X be an
intervention k-itemset, S be a subpopulation-defining item-
set, and let X and S be disjoint. Further, X−i be an itemset
that evaluates to ‘true’ iff all items except the ith are ‘true’
but the ith item is ‘false’. Using association rule mining ter-
minology, all items in X except the ith are present in the
transaction.

Definition 1 (Potential Outcome Support Pruning).
We only need to consider itemsets X such that

min{support(S,X), support({S,X−1), . . . ,

support(S,X−k)} > θ.

In order to be able to estimate the effect of x ∈ X in the
subpopulation S, we need to have observations with x ‘true’
and also with x ‘false’ in S.

Lemma 1. Potential Outcome Support Pruning is anti-
monotonic.

Proof: Consider a causal rule X → Y |S . If the causal rule
X → Y |S is infrequent, then

support(XS) < θ ∨ ∃i, support(X−iS) < θ.

If support(X−iS) had insufficient support, then any exten-
sion of it with an intervention item x will continue to have
insufficient support, thus the Xx → Y |S rule will have in-
sufficient support. Likewise, if support(XS) had insufficient
support, then any extension of it with an intervention item
x will also have insufficient support.

Pruning based on Causal Effect.

Proposition 1. Effective causal rule pruning condition
is anti-monotonic.



Rationale: To explain the rational, let us return to the
medical example, where X is a combination of drugs forming
a treatment. Assuming that the effects of drugs are additive,
if a casual rule X → Y |S is ineffective because

∃xi ∈ X, |ATT(xi → Y |S,X\xi
)| < η,

then forming a new rule Xxj → Y |S will also be ineffective
because

|ATT(xi → Y |S,xj ,X\xi
)|

will be ineffective. In the presence of positive interactions
(that reinforce each other’s effect) among the drugs, this
statement may not hold true. Beside statistical reasoning,
one can question why a patient should receive a drug that
has no effect in a combination.

6 Causal Estimation Methods
ATT, our metric of interest, with respect to a single inter-
vention x in a subpopulation S is defined as

ATT(x→ Y |S) = E [Y1 − Y0]S,X=1 ,

which is the expected difference between the potential out-
come under treatment Y1 and the potential outcome with-
out treatment Y0 in patients with S who actually received
treatment. Since we consider treated patients, the potential
outcome Y1 can be observed, the potential outcome Y0 can-
not. Thus at least one of the two must be estimated. The
methods we present below differ in which potential outcome
they estimate and how they estimate it.

For the discussion below, we consider the variables X, Z,
U and V from the causal graph in Figure 1. X is a single
intervention, U , V and Z can be sets of items. For regression
models, we will denote the matrix defined by U , V and Z
in the subpopulation S as U , V and Z (same letter as the
variable sets).

Counterfactual Confidence (CC). This is the simplest
method. We simply assume that the patients who receive
intervention X = 1 and those who do not X = 0, do not dif-
fer in any important respect that would influence Y . Under
this assumption, Y1 in the treated is simply the actual out-
come in the treated and the potential outcome Y0 is simply
the actual outcome in the non-treated (X = 0). Thus

ATT = conf((X = 1)→ Y |S)− conf((X = 0)→ Y |S),

= P(Y |S,X = 1)− P(Y |S,X = 0)

In the followings, to improve readability, we drop the S
subscript. All evaluations take place in the S subpopula-
tions.

Direct Adjustment (DA). We cannot estimate Y0 in the
treated (X = 1) as the actual outcome Y in the untreated,
because the treated and untreated populations can signifi-
cantly differ in variables such as Z and V that influence Y .
In Direct Adjustment, we attempt to directly remove the ef-
fect of V and Z by including them into a regression model.
Since a regression model relates the means of the predictors
with the mean of the outcome, we can remove the effect of
V and Z by making their means 0.

Let R be a generalized linear regression model, predicting
Y via a link function g

g(Y |V,Z,X) = β0 + βV V + βZZ + βXX.

Then the (link-transformed) potential outcome under treat-
ment is g(Y1) = β0 + βV V + βZZ + βX and the potential
outcome without treatment is g(Y0) = β0 + βV V + βZZ.
The ATT is then

ATT = E
[
g−1(Y1|V,Z,X = 1)

]
X=1
−

E
[
g−1(Y0|V,Z,X = 0)

]
X=1

.

where g−1(Y1|V,Z,X = 1) is prediction for an observation
with the observed V and Z but with X set to 1. The E(·)X=1

notation signifies that these expectation of the predictions
are taken only over patients who actually received the treat-
ment.

The advantage of DA (over CC) is manyfold. First, it can
adjust for Z and V as long the model specification is correct,
namely the interaction terms that may exist among Z and V
are specified correctly. Second, we get correct estimates even
if we ignore U , because U is conditionally independent of Y
given X. This unfortunately only is a theoretical advantage,
because we have to infer from the data whether a variable
is a predictor of Y and U is marginally dependent on Y , so
we will likely adjust for U , even if we don’t need to.

Counterfactual Model (CM). In this technique, we build
an explicit model for the potential outcome without treat-
ment Y0 using patients with X = 0. Specifically, we build a
model

g(Y |V,Z,X = 0) = β0 + βV V + βZZ.

and estimate the potential outcome as

g(Y0|V,Z) = g(Y |V,Z,X = 0).

The ATT is then

ATT = P(Y |X = 1)− E
[
g−1(Y0|V,Z)

]
X=1

.

Similarly to Direct Adjustment, the Counterfactual Model
does not depend on U . However, in case of the Counterfac-
tual Model, we are only considering the population with
X = 0. In this population, U and Y are independent, thus
we will not include U variables into the model.

Propensity Score Matching (PSM). The central idea
of Propensity Score Matching is to create a new population,
such that patients in this new population are comparable in
all relevant respects and thus the expectation of the poten-
tial outcome in the untreated equals the expectation of the
actual outcome in the untreated.

Patients are matched based on their propensity of receiv-
ing treatment. This propensity is computed as a logistic
regression model with treatment as the dependent variable

log
P(X)

1− P(X)
= β0 + βV V + βZZ.

Patient pairs are formed, such that in each pair, one patient
received treatment and the other did not and their propen-
sities for treatment differ by no more than a user-defined
caliper difference ρ.

The matched population has an equal number of treated
and untreated patients, is balanced on V and Z, thus the
patients are comparable in terms of their baseline risk of Y .
Hopefully, the only factor causing a difference in outcome is
the treatment.

For estimating ATT, the potential outcome without treat-
ment is estimated from the actual outcomes of the patients



in the matched population who did not receive treatment:

ATT = E [Y1 − Y0]

− P(Y |X = 1,M)− P(Y |X = 0,M),

where M denotes the matched population.

Among the methods we consider, propensity score match-
ing most strictly enforces the patient comparability crite-
rion, however, it is susceptible to misspecification of the
propensity regression model, which can erode the quality
of the matching.

Stratified Non-Parametric (SN). In the stratified esti-
mation, we directly compute the expectation via stratifica-
tion. The assumption is that the patient in each stratum
are comparable in all relevant respects and only differ in the
presence or absence of intervention. In each stratum, we
can estimate the potential outcome Y0 in the treated as the
actual outcome Y in the untreated.

ATT = E [Y1 − Y0]X=1

=
∑
l

P (l|X = 1) [P (Y1|l,X = 1)− P (Y0|l,X = 1)]

=
∑
l

P (l|X = 1) [P (Y |X = 1)− P (Y |X = 0)] ,

where l iterates over the combined levels of V and Z. If we
can identify the items that fall into U , then we can ignore
them, otherwise, we should include them as well into the
stratification.

The stratified method makes very few assumptions and
should arrive at the correct estimate as long as each of the
strata are sufficiently large. The key disadvantage of the
stratified method lies in stratification itself: when the num-
ber of items across which we need to stratify is too large, we
may end up dividing the population into excessively many
small subpopulations (strata) and become unable to esti-
mate the causal effect in many of them thus introducing
bias into the estimate.

7 Results
After describing our data and study design, we present three
evaluations of the proposed methodology. The first evalua-
tion demonstrates the computational efficiency of our prun-
ing methodologies, isolating the effect of each pruning meth-
ods: (i) Apriori support-based pruning, (ii) Potential Out-
come Support Pruning, and (iii) Potential Outcome Support
Pruning in conjunction with Effective Causal Rule Pruning.
In the second section, we provide a qualitative evaluation,
looking at patterns involving statin. We attempt to use the
extracted patterns to explain the controversial findings that
exist in the literature regarding the effect of statin on di-
abetes. Finally, in order to compare the treatment effect
estimates to a ground truth, which does not exists for real
drugs, we simulate a data set using proportions we derived
from the Mayo Clinic data set.

Data and Study Design. In this study we utilized a
large cohort of Mayo Clinic patients with data between 1999
and 2013. We included all adult patients (69,747) with re-
search consent. The baseline of our study was set at Jan. 1,
2005. We collected lab results, medications, vital signs and
status, and medication orders during a 6-year retrospective

period between 1999 and the baseline to ascertain the pa-
tient’s baseline comorbidities. From this cohort, we excluded
all patients with a diagnosis of diabetes before the baseline
(478 patients), missing fasting plasma glucose measurements
(14,559 patients), patients whose lipid health could not be
determined (1,023 patients) and patients with unknown hy-
pertension status (498 patients). Our final study cohort con-
sists of 52,139 patients who were followed until the summer
of 2013.

Patients were phenotyped during the retrospective period.
Comorbidities of interest include Impaired Fasting Glucose
(IFG), abdominal obesity, Hypertension (HTN; high blood
pressure) and hyperlipidemia (HLP; high cholesterol). For
each comorbidity, the phenotyping algorithm classified pa-
tients into three broad levels of severity: normal, mild and
severe. Normal patients show no sign of disease; mild pa-
tients are either untreated and out of control or are con-
trolled using first-line therapy; severe patients require more
aggressive therapy. IFG is categorized into normal and pre-
diabetic, the latter indicating impaired fasting plasma glu-
cose levels but not meeting the diabetes criteria yet. For
this study, progression to T2DM within 5 years from base-
line (i.e. Jan 1, 2005) was chosen as our outcome of interest.
Out of 52,139 patients 3627 patients progressed to T2DM ,
41028 patients did not progressed to T2DM and the remain-
ing patients (7484) dropped out of the study. In Table 1 we
present statistics about our patient population.

T2DM
Present Absent

Total Number of Patients 3627 41028
Average Age 44.73 35.58
Male(%) 51 41
Female(%) 49 59

Patient Diagnosis Status (%)
NormFG 42 84
PreDM 58 16
Normal Obesity 29 59
Mild Obesity 25 30
Severe Obesity 46 11
Normal Hypertension 48 69
Mild Hypertension 33 23
Severe Hypertension 19 08
Normal Hyperlipidemia 12 29
Mild Hyperlipidemia 72 64
Severe Hyperlipidemia 16 07

Patient Medication Status(%)
Statin 26 11
Fibrates 03 01
Cholesterol.Other 02 01
Acerab 17 07
Diuret 18 07
CCB 08 04
BetaBlockers 22 10
HTN.Others 01 01

Table 1: Demographics statistics of patient popula-
tion

7.1 Pruning Efficiency
In our work, we proposed two new pruning methods. First,
we have the Potential Outcome Support Pruning, which
aims to eliminate patterns for which the ATT is not es-
timable. Second, we have the Effective Causal Rule Pruning,
where we eliminate patterns that do not improve treatment
effectiveness relative to the subitemsets.



In Figure 2 we present the number of patterns discovered
using (i) the traditional Apriori support based pruning, (ii)
our proposed Potential Outcome Support Pruning (POSP),
and (iii) POSP in conjunction with Effective Causal Rule
Pruning (ECRP).

Figure 2: Comparison of Pruning Techniques

The number of patterns discovered by POSP is strictly
less than the number of patterns discovered by the Apriori
pruning. POSP in conjunction with ECRP is very effective.

7.2 Statin
In this section, we demonstrate that the proposed causal
rule mining methodology can be used to discover non-trivial
patterns from the above diabetes data set.

In recent years, the use of statins, a class of cholesterol-
lowering agents, have been prescribed increasingly. High
cholesterol (hyperlipidemia) is linked to cardio-vascular mor-
tality and the efficacy of statins in reducing cardio-vascular
mortality is well documented. However, as evidenced by a
2013 BMJ editorial [4] devoted to this topic, statins are sur-
rounded in controversy. In patients with normal blood sugar
levels (labeled as NormalFG), statins have a detrimental ef-
fect, they increase the risk of diabetes; yet in pre-diabetic
patients (PreDM), it appears to have no effect. What we
demonstrate below is that this phenomenon is simply dis-
ease heterogeneity.

First, we describe how this problem maps to the causal
rule mining problem. Our set of interventions (X ) consists
of statin and our subpopulation defining variables consist of
the various levels of HTN, HLP and IFG (S). Our inter-
est is the effect of statin (x) on T2DM (Y ) in all possible
subpopulations S, S ⊂ S.

In this setup, HTN, which is associated with both hy-
perlipidemia (and statin use), as well as with T2DM, is
a confounder (Z). A cholesterol drug, other than statin,
(say) fibrates, are in the U category: they are predictive of
statin (patients on monotherapy who take fibrates do not
take statins), but have no effect on Y , because its effect is
already incorporated into the hyperlipidemia severity vari-
ables that defined the subpopulation. Variables that only
influence diabetes but not statin use (say a diabetes drug)
would fall into the V category. All subpopulations have vari-
ables that fall into Z and U and some subpopulation may
also have V .

The HLP variable in Table 1 uses statin as part of its defi-
nition, thus we constructed two new variables. The first one
is HLP1, a variable at the borderline between HLP-Normal

and HLP-Mild, consisting of untreated patients with mildly
abnormal lab results (these fall into HLP-Normal) and pa-
tients who are diagnosed and receive a first-line treatment
(they fall into HLP-Mild). Comparability is the central con-
cept of estimating causal effects and these patients are com-
parable at baseline. Similarly, we also created another vari-
able, HLP2, which is at the border of HLP-Mild and HLP-
Severe, again consisting of patients who are comparable in
relevant aspects of their health at baseline.

S CC DA CM PSM SN
PreDM 0.145 0.022 0.010 0.022 0.017
NormFG 0.060 0.023 0.034 0.017 0.029
HLP1 0.078 0.019 0.014 0.010 0.010
HLP2 0.021 -0.013 -0.010 -0.021 -0.015
PreDM,HLP1 0.067 0.018 0.021 0.004 0.002
PreDM,HLP2 0.001 -0.038 -0.031 -0.048 -0.043
NormFG,HLP1 0.043 0.020 0.015 0.014 0.013
NormFG,HLP2 0.017 -0.002 -0.002 -0.005 -0.004

Table 2: ATT due to statin in various subpopula-
tions S as estimated by the 5 proposed methods.

Table 2 presents the ATT estimates obtained by the var-
ious methods proposed in Section 3.4 for some of the most
relevant subpopulations. Negative ATT indicates beneficial
effect and positive ATT indicates detrimental effect.

Counterfactual confidence (CC) estimates statin to be detri-
mental in all subpopulations. While statins are known to
have detrimental effect in patients with normal glucose lev-
els [4], it is unlikely that statins are universally detrimental,
even in patients with severe hyperlipidemia, the very disease
it is supposed to treat.

The results between DA, CM, PSM and SN are similar,
with PSM and SN having larger effect sizes in general. The
picture that emerges from these results is that patients with
severe hyperlipidemia appear to benefit from statin treat-
ment even in terms of their diabetes outcomes, while statin
treatment is moderately detrimental for patients with mild
hyperlipidemia.

Bootstrap estimation was used to compute the statisti-
cal significance of these results. For brevity, we report the
results only for PSM. The estimates are significant in the fol-
lowing subpopulations: NormFG, PreDM+HLP2 (p-values
are <.001) and NormFG+HLP1 (p-value .05).

The true ATT in these subpopulations is not know. To
investigate the accuracy that the various methods achieve,
we use simulated that is largely based on this example [4,
33].

7.3 Synthetic Data
In this section, we describe five experiments utilizing syn-
thetic data sets, each of which introduces a new potential
source of bias. Our objective is to illustrate the ability of the
five methods from Section 3.4 for adjusting for these biases.
We compare their ATT estimates to the true ATT we used
to generate the data set and discuss reasons for their success
or failure.
The rows of Table 3 correspond to the synthetic data sets in
increasing order of the biases we introduced and the columns
corresponds to the methods: Conf (confidence), CC (Coun-
terfactual Confidence), DA (Direct Adjustment), CM (Coun-
terfactual Model), PSM (Propensity Score Matching) and



SNP (Stratified Non-Parametric).
Some of these methods, DA, CM, PSM and SNP take the
causal graph structure into account while estimating ATT.
Specifically, they require the information whether a variable
is a confounder (Z), has a direct effect (V ), an indirect effect
(V ), or no effect (O). PSM and SNP are not sensitive to the
inclusion of superfluous variables, they simply decrease the
method’s efficiency.
In all of the data sets, we use a notation consistent with
Figure 1: Z is the central disease with outcome Y ; X is the
intervention of interest that treats Z; V is another disease
with direct causal effect on Y , but V is independent of X;
and U is a third disease, which can be treated with X, but
has no impact on Y . All data sets contain 5000 observations.

I. Direct Causal Effect from V . We assume that every pa-
tient in the cohort has disease Z at the same severity. They
are all comparable w.r.t. Z. 30% of the patients are sub-
ject to the intervention X aimed at treating Z, while others
are not. Untreated patients face a 25% chance of having Y ,
while treated patients only have 10% chance. Some patients,
20% of the population, also have disease V , which directly
affects Y : it increases the probability of Y by 5%.
In this example the true ATT is -.15, as X reduces the
chance of Y by 15%. Our causal graph dictates that X
and V be marginally independent, hence this this effect is
homogeneous across the levels of V . (Otherwise V would
become predictive of X and it would become a confounder.
Confounding is discussed in experiments III-V.) All methods
estimated the ATT correctly, because ATT does not depend
on V . We can demonstrate this by stratifying on V and
using the marginal independence of X and V .

ATT = E [P(Y |X = 1)− P(Y |X = 0)]

=
∑
v∈V

P(V = v) [P(Y |V = v,X = 1)− P(Y |V = v,X = 0)]

=
∑
v∈V

[P(Y, V = v|X = 1)− P(Y, V = v|X = 0)]

= P(Y |X = 1)− P(Y |X = 0)

where v denotes the levels of V . The marginal independence
of X and V is used in step three:

P(Y |V,X) =
P(Y, V,X)

P(V,X)
=

P(Y, V |X)P(X)

P(X,V )
=

P(Y, V |X)

P(V )
.

II. Indirect Causal Effect. The setup for this experiment is
the same as for the ’Direct Causal Effect’ experiment, except
we have disease U instead of V . Just like Z, disease U is
also treated by X, but U has no direct effect on Y ; its effect
is indirect through X. U is thus independent of Y given X.
The true ATT continues to be -.15.
Again, the ATT does not depend on U , hence all methods
estimated it correctly. To demonstrate that ATT does not
depend on U , we use stratification and the conditional inde-

pendence of Y and U .

ATT = E [P(Y |X = 1)− P(Y |X = 0)]

=
∑
u∈U

[P(Y |U = u,X = 1)P(U = u|X = 1)

−P(Y |U = u,X = 0)P(U = u|X = 0)]

=
∑
u∈U

[P(Y |X = 1)P(U = u|X = 1)

−P(Y |X = 0)P(U = u|X = 0)]

= P(Y |X = 1)
∑
u

P(U = u|X = 1)−

P(Y |X = 0)
∑
u

P(U = u|X = 0)

= P(Y |X = 1)− P(Y |X = 0)

III. Confounding. In this experiment, we consider the sim-
plest case of confounding, involving a single disease Z, a
single treatment X and outcome Y . 20% of the patients
have disease Z and 95% of the diseased patients are treated
with X, while 5% are not. All treated patients have Z. 25%
of the untreated patients (Z = 1 and X = 0) have outcome
Y ; 10% of the treated patients (Z = 1 and X = 1) have the
outcome; and only 5% of the healthy patients (Z = 0) have
it. The true ATT is -.15.
In the presence of confounding, the counterfactual confi-
dence and ATT do not coincide. With z denoting the levels
of Z and P(z) being a shorthand for P(Z = z),

ATT = E [P(Y |X = 1)− P(Y |X = 0)]

=
∑
z

P(z) [P(Y |X = 1, z)− P(Y |X = 0, z)] ,

while the counterfactual confidence (CC) is

CC = P(Y |X = 1)− P(Y |X = 0)

=
∑
z

[P(Y |X = 1, z)P(z|X = 1)

−P(Y |X = 0, z)P(z|X = 0)] .

When P(z|X) 6= P(z), these quantities do not coincide.
However, any method that can estimate P(Y |X,Z) for all
levels of Z and X will arrive at the correct ATT estimate.
We used logistic regression in our implementation of the
Direct Adjustment method, which can estimate P(Y |X,Z)
when X and Z have no interactions. Note that the causal
graph admits interaction between X and Z, thus model mis-
specification can cause biases in the estimate.

IV. Confounding with Indirect Effect. In addition to the
Confounding experiment, we also have an indirect causal
effect from U . We now have two diseases, Z and U , each
of which can be treated with X. 20% of the population has
Z and independently, 20% has U . 25% of the patients who
have Z and have no treatment (X = 0) have Y , while only
10% of the treated (X = 1) patients have it, regardless of
whether the patient has U . (If the probability of Y was
affected by U , it would be another confounder, rather than
have an indirect effect.)
X has a beneficial ATT of -.15 in patients with Z == 1 (and
X == 1) and has no effect in patients with Z = 0 (who get
X because of U). Thus the true ATT=-.0833.
In this experiment, the counterfactual model was the best-
performing model. The counterfactual model estimates the



ATT through the definition

ATT = E [P(Y1|X = 1)− P(Y0|X = 1)] ,

where Y0 is the potential outcome the patient would have
without treatment X = 0 and P(Y0|X = 1) is the coun-
terfactual probability of Y (the probability of Y had they
not received X) in the population who actually got X = 1.
Note that the potential outcome Y1|X = 1 in the patients
who actually got X = 1 is the observed outcome Y |X = 1.
With u and z denoting the levels of U and Z, respectively
and P(u) being a shorthand for P(U = u),

ATT = E [P(Y |X = 1)− P(Y0|X = 1)]

=
∑
u

∑
z

P(u, z) [P(Y |X = 1, u, z)− P(Y0|X = 1, u, z)]

=
∑
z

P(z)
∑

[P(Y |X = 1, z)− P(Y0|X = 1, z)]

=
∑
z

P(z)
∑

[P(Y |X = 1, z)− P(Y |X = 0, z)] ,

which coincides with the data generation mechanism, hence
the estimate is correct.

In the derivation, step 2 holds because U and Z are inde-
pendent givenX and step 3 uses the fact that the counterfac-
tual model estimates P0(Y |X = 1, z, u) from the untreated
patients, thus

P(Y0|X = 1, z, u) = P(Y |X = 0, z, u) = P(Y |X = 0, z).

V. Confounding with Direct and Indirect Effects. In this ex-

periment, we have three diseases: our index disease Z, which
is a confounder; U having an indirect effect on Y via X; and
V having a direct effect on Y . 20% of the population has
each of Z, V and U independently. 95% of patients with Z
or U get the intervention X. 25% of the untreated patients
with Z get Y , while only 10% of the treated patients do,
regardless of whether they have U . Patients with V face a
5% in their chance of experiencing outcome Y .
X has a beneficial ATT of -.15 in patients with Z = 1 and
have no effect in patients with Z = 0 (who get X because of
U). Whether a patient has V does not influence the effect
of X. The true ATT is thus -.0833.
None of the methods estimated the effect correctly, but Propen-
sity Score Matching came closest. Analytic derivation of
why it performed well is outside the scope of this paper, but
in essence, its success is driven by its ability to maximally ex-
ploit the independence relationships encoded in the causal
graph. It can ignore V when it constructs the propensity
score model, because X and V are independent (when Y
not given); and it can ignore U and V when it computes the
ATT in the propensity matched population. On the other
hand, the causal graph admits interaction among U , Z and
X, thus a logistic regression model as the propensity score
model can be subject to model misspecification.
The Stratified Non-Parametric method, which is essentially
just a direct implementation of the definition of ATT, un-
derestimated the ATT by almost 25%. The reason lies in the
excessive stratification across all combinations of the levels
of U , V , and Z. Even with just three variables, most strata
did not have sufficiently many patients (either treated or
untreated) to estimate P(Y |X,u, v, z). In the discussion, we
will describe remedies to overcome this problem.

Conf CC DA CM PSM SN
I. +.110 -.150 -.150 -.150 NA -.150
II. +.099 -.150 -.150 -.150 -.151 -.149
III. +.099 +.047 -.136 -.136 -.136 -.136
IV. +.077 +.024 -.019 -.083 -.068 -.064
V. +.072 +.038 -.037 -.105 -.074 -.067

Table 3: The ATT estimates by the 6 methods in the
five experiments. The experimental conditions, the
full names of the methods and the true ATT value
are specified in the text.

8 Discussion And Conclusion
We proposed the causal rule mining framework, which tran-
sitions pattern mining from finding patterns that are associ-
ated with an outcome towards patterns that cause changes
in the outcome. Finding causal relationships instead of as-
sociations is absolutely critical in health care, but also has
appeal beyond health care.

The numerous biases that arise in establishing causation
make quantifying causal effects difficult. We use the Neyman-
Rubin causal model to define causation and use the poten-
tial outcome framework to estimate the causal effects. We
correct for three kinds of potential biases: those stemming
from direct causal effect, indirect causal effect and confound-
ing. We compared five different methods for estimating the
causal effect, evaluated them on real and synthetic data and
found that three of these methods gave very similar results.

We have demonstrated on real clinical data that our pro-
posed method can effectively enumerate causal patterns in a
large combinatorial search space due to the two new pruning
methods we developed for this work. We also demonstrated
that the patterns discovered from the data were very rich
and we managed to illustrate how the effect of statin is dif-
ferent in various subpopulations. The results we found are
consistent with the literature but go beyond what is already
known about statin’s effect on the risk of diabetes.

The discussions and experimental results provided in this
paper provide some general guidance on when to use the
different methods we described. We recommend counterfac-
tual confidence if no confounding is suspected as counterfac-
tual confidence is computationally efficient and can arrive
at the correct solution even when direct effects and indirect
effects are present. In the presence of confounding, propen-
sity score matching gave the most accurate results, but due
to the need to create a matched population, it has built-in
randomness, increasing its variance. Moreover, the counter-
factual model as well as the propensity score model are sus-
ceptible to model misspecification. If unknown interactions
among variables are suspected, we recommend the strati-
fied non-parametric method. With this technique, model
misspecification is virtually impossible, however, its sample
size requirement is high. The stratified model is subopti-
mal if we need to stratify across many variables. Stratify-
ing across many variables can fragment the population into
many strata too small to afford us with the ability to esti-
mate the effects correctly. If the estimates use some strata
but not others, they may be biased.
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