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Problem 

• In United States, 2010: 
– 4.9 million people required help to complete ADLs 
– 9.1 million people unable to complete IADLs 1 

• Home Healthcare (HHC) 
– Spending in 1980 increased from $2.4 billion to $17.7 billion today 
– Report improved mobility in 46.9% adults before discharge from HHC 2 

• Mobility is one component of functional status 
– Mobility affects functional status and functional disability 
– Less than one-third of older adults recover pre-hospital function 3 

– Increased risk of falls in home, rehospitalization, disability, social 
isolation, loss of independence 

– Besides physical issues, also psychosocial issues,  comorbidity 
and death 



Purpose  
• To discover patients and support system characteristics 

associated with the improved outcomes of mobility 
• Find new factors associated with mobility besides current 

ambulation status during admission (OR = 5.96) 
• In each subgroup of patients defined by current 

ambulation status during admission (1-5) 
– We started with group 2 and then compare the observations with 

other groups 
• To compare the predictors across each patient subgroup 

to find the consistent biomarkers in all subgroups and 
specific factors in each subgroup 

 



KDD Process 

Fayyad UM, Piatetsky-Shapiro G, Smyth P, Uthurusamy R. Advances in knowledge 
discovery and data mining. Menlo Park, CA: AAI Press/ The MIT Press Press; 1996.  



Data Selection 



OASIS  

• Standard assessment required for all 
Medicare and Medicaid patients 

• Includes 
– Demographic and patient history information  
– Health status  
– Activities of daily living (ADLs) and 

instrumental activities of daily living (IADLs) 
– Medication and equipment management 
– Service utilization 



Mobility (M0700 Ambulation/ Locomotion) 
Outcome 



Selection Criteria 
– Inclusion Criteria 

• Medicare certified agency – OASIS documentation 
• Minimum of two OASIS records representing an 

episode 
• Adult, non-maternity clients receiving skilled 

homecare services 
• No missing data to calculate a change from start to 

end of an episode for the outcome variables 
• Episode started and completed between 10/1/08 

and 12/31/09 
– Exclusion Criteria 

• Patients with no mobility problem on admission for 
outcome variables 

 



Example of Creating a Data Set 

Reason for Removing Records n 
Incomplete episode records 464,485 
Assessment outside study dates 125,886 
Incorrect type of assessment 51,779 
Masked or missing data 16,302 
Duplicate records 2,748 
Age < 18 or primary dx related to 
pregnancy/ complications 

822 

Initial Data Set 
808 agencies, 1,560,508 OASIS records, 888,243 patients 
 

Final Data Set 
785 agencies, 447,309 patients,  

449,243 episodes of care, 0.6% re-admissions 



Overall Steps 
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Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P.  (1996).  From data mining to knowledge discovery in databases.  
AI Magazine, pp. 37 – 54. http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf.   P. 41 

OASIS data extracted 
from  EHRs from 270,634 

patients served by 581 
Medicare-certified home 

healthcare agencies 

Standardizing data, de-
identifying patient, 

imputing missing value, 
binarizing data into 98 

variables 
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Data Preparation 



Data Preparation 
• De-identification of data  
• Selecting correct assessment type 
• Creating episodes of care  
• Removing duplicate records 
• Data quality 

– Valid Values  
• Ambulation measured from 0 – 5, but data includes 6 

and 7 
– Missing data 

• Just plain incomplete 
• Skip patterns 

• Data type needed for analysis 



Unit of Analysis 



Data Quality Issues 
• Know the Strengths and Limitations of Your Data 
• Documentation issues 

• Consistency of processes for documenting 
• Copy forward or copy/paste 
• Incomplete/ inappropriate data in the database 

• Rules for data collection 
• Charting by exception 
• Rules i.e. the Joint Commission, CMS, billing 

• Database / data model 
• Field type 
• Relationship of fields – how do you link data 

• Patient outliers 
• Data with too little variance 
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Figure 1. OASIS Integumentary Skip Pattern 



Recoding Data 

1 - Stage 1 
2 - Stage 2 
3 - Stage 3 
4 - Stage 4 
NA - No observable 
pressure ulcer 

0 No observable 
pressure ulcer 
1 - Stage 1 
2 - Stage 2 
3 - Stage 3 
4 - Stage 4 

Stage of most problematic pressure ulcer  
UK = Missing 
NA = 0 



Data Transformation 

• Create new variables 
• Data reduction 
• Format for to meeting 

assumptions for analyses 
• Increase interpretability of 

results 
• Decrease chaos 



Creating Variables 
• Length of stay = end date of episode – start 

date of episode + 1 day 
– M0090 Date of Assessment  
– We will need to look at distribution of this variable 

to determine categories and if there are any 
patients that are outliers that we might want to 
drop i.e. < 7 days or > 120 days 

1. < 30 days 
2. 30 – 59 days 
3. 60 – 89 days 
4. 90 – 120 days 
5. > 120 days 

 



Transformation 
• Clinical Classification Software  

– Primary diagnoses and then reduced into 51 
smaller groups within 11 major categories 

• Charlson Index of Comorbidity  
– Additional medical diagnoses 

• Scales 
– Prognosis, Pain, Pressure Ulcer, Stasis Ulcer, 

Surgical Wound, Respiratory Status 
 

http://www.nursing.umn.edu/ICNP/OtherProjects/index.htm 



Data Mining Techniques 

• We found the risk variables that are significantly associated 
with mobility outcome vary among the groups 

• Group the single predictors based on whether they cover 
same or different patient group 
– Clustering 

• Based on similarity of sample space 
• Not discriminative 
• High frequency variables got merged 

– Pattern mining based approach 
• Discriminative 
• Coherence (similarity of sample space) 

 



Subgroup Variability 
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Variables 



Patterns Associated with 
Improvement in Group 2 

Older adults with no 
problems in daily 

activities 

Healthier physiological 
and psychosocial 

elderly 

Household 
Management 



Patterns Associated with No 
Improvement in Group 2 
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Incapable to 
toilet and 
transfer 

Help with 
financial and 
legal matters 

Cognitive deficits and 
behavioral problems 

Paid Help 

Frail patients 
with functional 

deficiency 



Patterns Associated with Mobility in 
Group 1 
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Patterns Associated with Mobility in 
Group 3 



Patterns Associated with Mobility in 
Group 4 

28 



Discussion 

• Single variables may be less helpful than 
patterns of variables – higher categories 

• Limitation 
– Large national sample – but not random, may be bias 

in results 
– Missing interventions due to lack of standardization 
– Length of stay may vary and contribute to findings 

• Results are knowledge discovery, not hypotheses 
testing 

• Integrate diagnosis codes (icd-9) and nursing 
interventions in future to combine factors related to 
mobility 
 



• High prevalence of mobility limitations for 
HHC patients (97%) 

• Mobility status at admission highest 
predictor of improvement 
– CMS outcome reporting controlling for this, 

but doesn’t look at differences by mobility 
status 

• Variations of predictors within subgroups 
• Different clusters point to the need to tailor 

interventions for subgroups 

Discussion 



Next Steps 

• Make recommendation to CMS about 
findings 

• Replicate with OASIS C – contains some 
interventions 

• Combine hospital and home care data to 
determine predictors upstream 
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