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Abstract—Electronic Health Records (EHRs) consists of pa-
tient information such as demographics, medications, laboratory
test results, diagnosis codes and procedures. Mining EHRs could
lead to improvement in patient healthcare management as EHRs
contain detailed information related to disease prognosis for large
patient populations. We hypothesize that a patient’s condition
does not deteriorate at random; the trajectories, sequences in
which diseases appear in a patient, are determined by a finite
number of underlying disease mechanisms. In this work, we
exploit this idea by predicting a patient’s risk of mortality in
the context of the metabolic syndrome by assessing which of
many available trajectories a patient is following and progression
along this trajectory. Implementing this idea required innovative
enhancements both for the study design and also for the fitting
algorithm. We propose a forensic-style study design, which aligns
patients on last follow-up and measures time backwards. We
modify the time-dependent covariate Cox proportional hazards
model to better capture coefficients of covariate that follow a
particular temporal sequence, such as trajectories. Knowledge
extracted from such analysis can lead to personalized treatments,
thereby forming the basis for future trajectory-centered guide-
lines.

I. INTRODUCTION

The use of large repositories of Electronic Health Records
(EHR) data for assessing the risk of adverse outcomes, such
as mortality or the development of new complications, is
experiencing a rapid growth in popularity. The most common
style of analysis for this purpose is based on longitudinal
retrospective design, where patients are aligned on a particular
point in time (e.g. enrollment into the study), called a baseline,
their state of health at baseline is characterized by elements
present in EHR data (baseline characteristics) and they are
followed until last follow-up, at which point they suffer the
adverse outcome in questions or are simply lost to follow-up
(are censored).

Such studies have enjoyed great success. Strong epidemi-
ological evidence has been discovered, which ultimately in-
fluenced health care policy. However, the acceptance and
incorporation of these methods into clinical decision support
systems is slow. The design underlying this methodology,
where a patient’s risk is solely based on baseline char-
acteristics, is incompatible with clinical practice. Providers
constantly reevaluate a patient’s risks and adjust treatment
accordingly. When the patient information shows no clear sign
of improvement or deterioration, a common approach is to

wait and see. As time progresses and the patient’s condition
further deteriorates, the outcome becomes more apparent and
an appropriate intervention can be administered. When the
patient’s health has deteriorated to the final stages, the outcome
can become obvious and also inevitable: there may be no time
for a successful intervention. Knowing not the only the risk
but also the expected timing of adverse events is important,
allowing the care provider to have time to intervene. In this
study, we look at a large diabetic population and aim to mimic
the clinical process. We assess the a patient’s risk at every
encounter, taking not only the prior conditions but also their
sequence into account.

Our working hypothesis is that a patient’s health deteri-
orates following a (small or large) number of non-random
mechanisms. These different mechanisms may affect organs
or health indicators (blood sugar, lipid levels, blood pressure)
differently, leading to different sequences of diagnoses. There-
fore, the order in which the diagnoses appear in a patient’s
record can be suggestive of the underlying disease mechanism,
allowing us to provide the patient a better prognosis.

We make the following contributions:

1) We propose modeling a patient’s risk of adverse outcome
based on the trajectories they follow and the extent to
which they have progressed along these trajectories; thus
allowing us to take the sequence of events into account.

2) We introduce the forensic-style analysis, which aligns
patients on last follow-up and measures time backwards.
Measuring time backwards allows us to estimate the
time-to-event more directly.

3) We modified the Cox proportional hazard model, using
forensic-style analysis, to better model time-dependent
covariates. Specifically, we modified how the outcome
is designated, allowing the fitting algorithm to better
estimate the risk of diseases in earlier stages of the
trajectories.

The paper is organized as follows. Section II describes
current state of the art techniques used to handle time-to-event
data. Section III-A introduces terminology associated with
trajectories. Section III-B discusses techniques for extracting
frequent trajectories. In Section III-C we present our model
and optimization framework. In Section IV, we discuss our
results. Finally, Section V presents our conclusions.



II. RELATED WORK

Survival modeling techniques on time-to-event data have
been explored widely in the past. Cox regression [1] is one of
the most commonly used survival regression models. Standard
regularization techniques, developed for other regression meth-
ods, have been applied to Cox models, as well. Lasso [2] and
elastic-net regularized Cox models [3] have been developed,
and have been further extended by regularizing them with con-
vex combinations of L1 and L2 penalties [4]. We are not aware
of regularization for time-dependent covariate Cox models [5],
which would be a straightforward extension. Chandan et. al [6]
proposed an active learning based survival model which uses
a novel discriminative gradient based sampling scheme and
observed better sampling rates as compared to other sampling
strategies. They also proposed correlation based regularizers
with Cox regression to handle correlated and grouped features
which are commonly seen in many practical problems [7].

III. METHODS

We consider seven diseases in the context of diabetes. These
are hyperlipidemia (HL; high cholesterol), hypertension (HTN;
high blood pressure), type-II diabetes mellitus (DM), chronic
kidney disease (CKD), ischemic heart disease (IHD), cerebro-
vascular disease (CVD), and congestive heart failure (CHF).
These are chronic diseases; once the presence of the disease
has been confirmed, they remain active. The patient may have
the condition under control (i.e. a patient can have normal
laboratory results), but the disease remains.

A. Trajectory Terminology

Not all mentions of these diseases in the patient’s record
indicate a new diagnosis. Often, these diagnoses are present for
billing purposes, as they complicate treatment. To determine
the precedence of the diseases in the trajectories, we need to
focus on new (incident) diagnoses. The term ‘incident’ refers
to the diagnosis creating a new incidence, as opposed to being
a chronic condition in the background that complicates the
treatment of a different disease. To identify incident diagnoses,
we need to determine the status of diseases at any time point.

The disease is confirmed if we have evidence that the
patient presents with the disease; it can be ruled out if we
have evidence that the patient does not have the disease; or
the status can be unknown otherwise (when we do not have
evidence either way).

Definition 1 (Disease confirmed): A disease is confirmed at
time t and thereafter, if the patient’s record has a diagnosis
code, a prescribed medication or an abnormal lab result (if
applicable) related to the disease.

Definition 2 (Disease ruled out): A disease is ruled out at
time t and before, if no pertinent medication prescription or
diagnosis code is present at or before t and a normal laboratory
result is present at t.

Definition 3 (Incident diagnosis): A new disease diagnosis
is incident at t if the disease is ruled out before t and confirmed
after t.

In plain language, a disease diagnosis is new (or an incident
diagnosis) if we have evidence that it is new: it was absent
before t and is present at t. For IHD, CVD and CHF, we do
not have laboratory results to rule them out, so we assume that
the first diagnosis of these diseases in our data is an incident
diagnosis.

Definition 4 (Background disease): Non-incident diagnosis
of a confirmed disease.

A background disease is a confirmed as a preexistent condi-
tion or a potentially preexisting condition that we cannot rule
out. If a patient enters the study with (say) HTN, then HTN
is a background disease (confirmed preexisting condition).
If the first appearance of HL (high cholesterol) is a year
after enrollment, but the patient does not have cholesterol
measurements before the diagnosis, then HL is background
(the patient may have had HL all along). If, however, we have
a normal cholesterol measurement before the HL diagnosis,
then the HL is incident, because we rule it out for (some part
of) the first year.

Definition 5 (Precedence): A disease A precedes disease B,
A → B, (or B follows A) in a patient, if the patient has an
incident disease B at time t and A is a background or incident
disease before t.

Since B is an incident disease, we ruled it out before t,
while A could not be ruled out before t, thus A occurred
earlier than B.

Definition 6 (Trajectory): A trajectory is a set of diseases,
some incident, some background, with precedence informa-
tion among them. In other words, a trajectory is a partially
temporally ordered set of diseases.

Example. T = (A,B) → C → D is a trajectory with A
and B being background diseases, whose ordering cannot be
determined from our data and C and D are incident diseases,
hence their ordering is known. The precedence information
is transitive, so beside the depicted A → C, B → C and
C → D precedence relationships, A → D and B → D also
hold. These diseases are chronic, hence at the time when the
patient develops C, he also has A and B; and at the time he
develops D, he also has A, B and C.

The central idea in our work is to place patients on trajecto-
ries, which requires that we define when a trajectory applies
to a patient or matches a patient’s trajectory.

Definition 7 (Sub-trajectory): A trajectory S is a subtrajec-
tory of T if the diseases in S are a subset of the diseases in T
and all precedence information in T that relates to the diseases
in S holds true in S.

Example. The trajectory S = B → C is a subtrajectory
of T , as it contains a subset of the diseases B and C and
all precedence relationships involving B or C in T , namely
B → C, also holds true in S.

Definition 8 (Prefix trajectory): A trajectory P is a prefix
trajectory of T if P is a subjectory of T and no disease in T
precedes any of the diseases in P .

Example. S = (A,B) → C is a prefix trajectory of T as
none of the diseases in T precede the diseases in S. In contrast,
B → C is not a prefix of T as there is a disease A in T that



precedes C in T .
Definition 9 (Matching): A trajectory T applies to a patient

with trajectory X (or matches X) iff (i) there exists a prefix
P of T that is a subtrajectory of X and (ii) there exists no
disease d in X , such that d is not a part of P but is present
in T .

Example. Consider a patient trajectory X = A → B →
C → D. The trajectory T = A → B → E matches X with
prefix P = A→ B, because the only disease in T that is not
in P (namely E) is not in X . The clinical motivation behind
this definition is that the patient with trajectory X may be
following T , just has not progressed to E yet. (He may also
follow other trajectories that explain C and D).

B. Algorithm for Extracting the Frequent Trajectories

Our goal is enumerate all trajectories that patients frequently
follow that end in mortality. Therefore, for trajectory extrac-
tion, we only consider patients who died and do not consider
patients who remained alive after last follow-up. We apply
the venerable Apriori algorithm [8] to enumerate all sub-
trajectories that occur in at least 4 patients. With 2814 total
deaths, the support of 4 (support fraction of 4/2814) is the
smallest support fraction that does not contain 0 in its 95%
confidence interval.

Output. The output of the algorithm is a library (set) of trajec-
tories, which we call library trajectories that end in mortality
and occur frequently in patients who suffered mortality. Some
of these trajectories can be sub-trajectories of each other.

C. Estimating the Relative Risk of the Trajectories

Given a potentially large and redundant set of library
trajectories, discovered above, our goal in this section is to
a develop a methodology for (i) selecting trajectories and (ii)
to estimate the risk of mortality in patients, who may follow
zero, one or more of the library trajectories.

C.1. Data Format.
The trajectories are transformed into a binary design matrix

X . The columns of X correspond to diseases along the
trajectories: each disease along each trajectory is mapped to
its own column. The rows of X correspond to patients during
different time periods, active periods. Therefore, for the ith
record, we have the associated trajectory information xi (ith
row in X), the beginning bi and end ei time of the active
period, the patient id pi and the outcome yi. The indicator
Ai(t) signals whether record i is active at time t; it returns 1
for bi ≥ t > ei. Note that in our forensic-style analysis, time
is measured backwards, so bi > ei.

For each patient, the active time periods are defined by
changes in the trajectory: whenever the patient develops a new
disease which corresponds to progression along a trajectory,
we add a new record with the appropriate timing information.
Therefore each record represents a new state, where the patient
has progressed further (has accumulated more diseases).

The outcome yi is 1 if the patient pi had an adverse outcome
exactly bi time after the beginning of the record. In contrast

to Cox models with varying covariates, the outcome is 1 for
all records of the patient. While it may appear that the patient
had died multiple times, our definition of bi (being measured
from death) ensures that these ”multiple” deaths coincide at
the right time point. The baseline hazard can compensate for
the multiplicity of deaths.

C.2. Model.
The model is a variant of the Cox Proportional Hazards

Regression model. Central to the model is the concept of
hazard, which we define analogously to the Cox terminology,
namely, as the instantaneous probability of death in exactly t
time from an event.

λ0(t) exp(xiβ) (1)

where λ0(t) is a time-dependent baseline hazard that is com-
mon across all patients and the trajectories xi increase the
hazard proportionally.

Given our design matrix X described earlier, the expression
xiβ expands into

xiβ =
∑

L∈L(bi)

∑
d∈L(bi)

βL,d (2)

where L(bi) is the set of library trajectories that apply to the
patient pi at time bi, the diseases d are the diseases confirmed
for the patient at or before time bi along the trajectory L,
and βL,d are the coefficients. The sum

∑
d∈L βL,d is the

(log) relative risk that having reached d along trajectory L
confers on the patient. Notice that the (log) relative risk along
a trajectory cumulates in a (log-)additive fashion, indicating
that each events along the trajectory also confers a proportional
hazard.

We can estimate the “probability” of death (technically,
expected count of deaths) for patient p at time t as

Λp(t) =

t∑
τ=0

λ0(τ) exp(xiβ),

for i : Ai(τ) = 1, pi = p

(3)

for all records i where the record is active at time τ and
describes patient p.

C.3. Likelihood.
The likelihood is the probability that for each patient p after

developing each disease d, the outcome happens exactly time
t after developing the disease.

∏
i

[
λ0(t) exp(xiβ)∑

j Aj(t)λ0(t) exp(xjβ)

]yi
for i : t = bi, j : bj ≥ t > ej

(4)

Defining the vector of linear risk score u as u = xβ, the
log likelihood becomes

`(u) =
∑
i

yi

ui − log
∑
j

Aj(bi) expuj

 (5)



C.4. Optimization
Our goal with the optimization is (i) select a subset of

the library trajectories for modeling and (ii) estimate their
coefficients. We optimize β iteratively through a gradient
boosting framework [9], adding a new trajectory in each
iteration. Adding a library trajectory, say L, is equivalent to
changing the corresponding set of coefficients in β, which we
denote by βL.

Performing boosting (gradient ascent in u-space), leads to
the update

u(k+1) = u(k) + γ
d`

du(k)
, (6)

where γ is the learning rate, u(k) is the linear risk score u in
the kth iteration and ` is the log likelihood function.

In iteration k, we need to find the trajectory that fits
d`/du(k) the best. Let ∇` denote the gradient d`/du(k). We
wish to find the trajectory L, with coefficient vector βL, such
that the quantity

minβL (∇`− xLβL)′(∇`− xLβL)

is minimal across all trajectories. The prime sign (’) denotes
matrix (vector) transposition. Once we find the optimal trajec-
tory along with the optimal βL, we can update the β vector.
The learning rate γ can be determined through line-search or
can also be chosen as an arbitrary small number.

Stopping criterion. We stop adding trajectories, when the
improvement of ` on either the training or a validation set
is less then a pre-defined small positive number ε.

Initialization. We can either start with an empty set of
trajectories, or we can provide a pre-selected set of trajectories
resulting from a greedy coverage of the events in the patient
trajectories. For our experiments, we started with an empty
set.

Gradient. To derive ∇`, we first separate out a particular
component uk from ` and then derive the partial derivative
with respect to uk.

` =
∑
i

{yiui − yi log [Aj(bi) expuj ]}

=

ykuk − yk log

Ak(bk) expuk +
∑
j 6=k

Aj(bi) expuj


+

∑
i6=k

yiui − yi log

Ak(bk) expuk +
∑
j

Aj(bi) expuj


∂`

∂uk
= yk − yk

Ak(bk) expuk∑
j Aj(bk) expuj

(7)

−
∑
i 6=k

yi
Ak(bi) expuk∑
j Aj(bi) expuj

= yk −
∑
i

yi
Ak(bi) expuk∑
j Aj(bi) expuj

(8)

The sum iterates over all records i that began during the active
time of record k divided by the summed risk of records j that
started when i was active. Thus the partial derivative can be
restated in a more familiar form

∂`

∂uk
= yk −

ek∑
τ=bk

(∑
i

yi∑
j Aj(τ) expuj

)
expuk, (9)

for i : bi = τ.

= yk −
ek∑
τ=bk

λ0(τ) expuk (10)

Unlike in the regular Cox models, the gradient is not the
residual, only a part of the residual that the corresponding
record is responsible for. For gradient boosting, it is not
required that the gradient coincides with the residual. The
form of the partial derivative, however, suggests a form for
the cumulative hazard that parallels the Breslow estimate [10]
in Cox models, which we presented in Eq. 3.

IV. EVALUATION AND RESULTS

We use the clinical data repository of a large health care
system situated in the Midwestern United States. Based on
data availability, we selected 2005 to 2014 as the study period.
We included all adult patients who developed type-II diabetes
during this period. Mortality data from the state death registry
was available for 8,000 of these patients. Our health care
system has a large tertiary care arm, thus many of the patients
may receive their primary care (and possibly diabetes care)
outside this system leading to large gaps in the data. To
exclude such patients, we required the study population to
have at least 2 Hemoglobin A1c measurements at least 1 year
apart. The final cohort consists of 2,814 cases (patients who
died) and almost 2,000 controls (who were censored). For
these patients, we collected diagnoses, lab values, vitals and
medication data.

Experiment Designs. Our problem is not a traditional com-
puter science problem hence methods to compare it against
are very few, and mostly in biostatistics and epidemiology.
We decided to evaluate our algorithm by showing that all in-
novations we claim improve the performance. Accordingly, we
build four models, starting from the simplest model (the one
that is typically used to solve this problem) and successively
adding our proposed features to it to isolate the effect of each
of our contributions.

(1) Enrollment-Aligned Design. The typical approach to
time-to-event problems is to conduct a retrospective study,
where patients are aligned on their enrollment into the study
and are followed until mortality or until they get lost to follow-
up (until censoring). The modeling method is Cox proportional
hazards model with time-dependent covariates [5]. This is the
simplest and most common model to solve our problem.

(2) Outcome-Aligned Design. The next simplest model aligns
patients on outcome, which admittedly, is an unusual but
reasonable design. Suppose patient i has follow-up Ti. We



select a time T , which is larger than all Ti’s and designate
T as the last follow-up for all patients. Consequently, in
this design, we align patients on their last follow-up (which
happens at time T for all patients by design). Their enrollment
time into the study will vary, it will be T − Ti for patient i.
This design assumes that the baseline hazard depends on time
from death. This stands in sharp contrast with the assumption
of the Enrollment-Aligned Design, which assumes that the
baseline hazard depends on time from enrollment. Therefore,
the Outcome-Aligned Design incorporates exactly one aspect
of the proposed forensic-style analysis: alignment on outcome
(i.e. alignment on the last follow-up).

(3) Forensic-Style Design. This is the design proposed in
this manuscript. Forensic-Style Design is similar to Outcome-
Aligned Design in that patients are aligned on last follow-up,
but it goes beyond by measuring time backwards. Measuring
time backwards allows us to designate all records of cases
(patients who died at last follow-up) as positive and still
retain the correct time of death across all records. Since the
likelihood has a different meaning in this design, we use
our own fitting algorithm from Section III-C: we use seven
”trajectories” each consisting of a single disease, thus our
predictors are the diseases. We will refer to this model as
’fast w/o traj’ (FAST without trajectories).

(4) Forensic-Style Analysis Via Survival Trajectories
(FAST). The experiment is designed using the Forensic-Style
Design, but instead of the seven diseases, we use trajectories
as predictors. This is precisely the proposed methodology.

Evaluation Method
Given the time-to-event outcome, our evaluation metric is

survival concordance. This is a widely used metric for time-
to-event data. For any two patients, i and j, i having a
higher risk of death than j, survival concordance measures the
probability that i dies earlier than j. Patient pairs, for which
it is not possible to determine whether the higher risk patient
dies earlier (e.g. he is still alive at last follow-up), are ignored.
Ties (patient pairs with the same risk and same time-to-death)
are also ignored. Note that i and j are different patients: two
records of the same patient are not compared.

A. Results

In Figure 1, we present the survival concordance of the four
models across the 100 bootstrap replications.

Effect of Aligning Patients on Outcome. The ’enrollment’
and ’outcome’ models use the same fitting algorithm (time-
dependent Cox model), the same predictors (the seven dis-
eases) and only differ in the study design: in the ’enrollment’
model, patients are aligned on their enrollment into the study,
while in the ’outcome’ model, they are aligned on their last
follow-up. The benefit of aligning patients on last follow-up is
clear. In the Enrollment-Aligned Design, time represents time-
since-enrollment, which is not associated with death. On the
other hand, in case of the Outcome-Aligned Design, time is
related to the time of death: time of death happens exactly at
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Fig. 1. Concordance of the various designs estimated through bootstrapping.

the same time point for all patients (by definition). Aligning
patients on their time of death (or censoring) allows for more
accurate description of the so-called risk set: the patients who
were under observation at the time, having the potential for
an event. (This is the denominator in the likelihood function.)

Effect of Outcome Designation. To assess the effect of the
outcome designation, we can compare the ’outcome’ model
with the ’fast w/o traj’. Both of these models utilize a study
design that aligns patients on the outcome; the difference
between them lies in measuring time backwards and the
outcome designation this change enables. The beneficial effect
of this difference is very significant as observed from the
paired t-test performed between survival concordance values
of the two methods (p-value 1e-16). Our choice of outcome
designation was motivated by the following observation. Given
a trajectory a→ b→ c that ends in death, in the typical study
design (Enrollment-Aligned or even Outcome-Aligned), when
the patient only has a, or has a and b, his outcome is still
designated as ’alive’. Since death rarely follows a or b without
c, this designation leads the fitting algorithm to believe that
a and b are protective. The result is negative coefficients for
these diseases and a survival concordance less than 0.5 (see
the ’enrollment’ model).

Effect of using trajectories. Finally, ’fast w/o trajectories’ and
’fast’ differ only in the use of trajectories. The use of trajec-
tories is advantageous (p-value 7.5e-6). When trajectories are
not utilized, the model only has seven predictors. Estimating
seven coefficients from 12k records contributed by 5k patients
is trivial. On the other hand, it is suspected that these seven
conditions affect the risk of mortality differently depending on
the presence of other conditions.



B. In-Depth Look at the FAST Results

Above, we have shown that the performance of FAST is
substantially and (statistically) significantly better than any
other model we have considered. In this section, we are going
to show some of the resultant models.

covariate enrollment outcome fast w/o traj
HL – – 0.00
HTN – – 0.00
DM 14.56 16.24 8.21
CKD -0.45 -0.21 -0.07
IHD 0.42 0.05 0.00
CVD -0.28 -0.37 -0.01
CHF -0.24 0.10 0.00

TABLE I
COEFFICIENTS OF THE NON-TRAJECTORY BASED MODELS

Table I presents the coefficients of the three models that do
not rely on trajectories. These are coefficients obtained from
regular Cox models and thus their interpretation is as follows.
For example, the relative risk of mortality that CHF (conges-
tive heart failure) confers on a patient is exp(−.24) = .79; a
patient with CHF is 21% less likely to die than the average
patient in our cohort. The coefficients of HL and HTN are 0
or NA because these diseases occur in nearly all patients. As
a result, their risk is not reasonably estimable. (’fast w/o traj’
did not select these variables, either.)

FAST Models.
In this section, we turn our attention to the FAST model.

To assess the statistical significance of the coefficients, we
ran 500 bootstrap replications, resulting in 500 models, each
potentially using a different set of trajectories.

Most of the 500 models used only one (392 models) or
two trajectories (34 models) and on the other extreme, there
were models using 20, 22, and 28 trajectories (one model
each). In Table II, we present some of the frequently selected
trajectories.

HL HTN DM CKD IHD CVD CHF
DM,HL,HTN → CHF (263)

coefs -0.23 -0.31 0.13 – – – 1.21
p-val 0.04 0.00 0.06 – – – 0.00

DM,HL,HTN → CKD (192)
coefs -0.25 -0.30 0.12 1.09 – – –
p-val 0.03 0.01 0.04 0.00 – – –

DM,HL → HTN → CKD (41)
coefs -0.10 -0.11 -0.04 0.76 – – –
p-val 0.02 0.02 0.27 0.00 – – –

HTN → HL → DM (10)
coefs 0.09 0.13 0.20 – – – –
p-val 0.00 0.00 0.00 – – – –

TABLE II
TRAJECTORIES AND THEIR COEFFICIENTS THAT WERE UTILIZED IN AT

LEAST 10 MODELS

The table presents the trajectory, followed by the number
of models that utilized this trajectory in parenthesis. We then
present the average coefficients (across the models that utilized
this trajectory) of the diseases along the trajectory and also

the empirical p-value of the coefficient, which is the fraction
of bootstrap iterations in which the sign of the coefficient in
question was the opposite of the sign of the mean.

V. SUMMARY AND CONCLUSION

In this manuscript we presented Forensic-style Analysis
based on Survival Trajectories (FAST). FAST makes two
key contributions: it places patients onto disease trajectories
to assess their risk of progression to an adverse outcome
(mortality in our study) and it performs a forensic-style
analysis, where patients are aligned on their last follow-up
and time is measured backwards. Measuring time backwards
allows a third ancillary contribution: we can designate the
outcome as positive for all records of cases (patients who
ultimately died), potentially leading to better estimates of the
effects of diseases that occur early in the progression. To
isolate the effect of our innovations, we successively enhanced
the baseline method (which we referred to as Enrollment-
Aligned Design) by adding our contributions one at a time.
We have thus demonstrated the benefit of aligning patients on
outcome when we believe that time-to-death is important; we
demonstrated the benefit of our outcome designation and we
have also isolated the beneficial effect of using trajectories.
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