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Effects of Single SNPs, Haplotypes, and Whole-Genome LD Maps
on Accuracy of Association Mapping

Nikolas Maniatis,� Andrew Collins, and Newton E Morton

Human Genetics Division, University of Southampton, Southampton General Hospital, Southampton, UK

We describe an association mapping approach that utilizes linkage disequilibrium (LD) maps in LD units (LDU). This
method uses composite likelihood to combine information from all single marker tests, and applies a model with a
parameter for the location of the causal polymorphism. Previous analyses of the poor drug metabolizer phenotype provided
evidence of the substantial utility of LDU maps for disease gene association mapping. Using LDU locations for the 27 single
nucleotide polymorphisms (SNPs) flanking the CYP2D6 gene on chromosome 22, the most common functional
polymorphism within the gene was located at 15 kb from its true location. Here, we examine the performance of this
mapping approach by exploiting the high-density LDU map constructed from the HapMap data. Expressing the locations of
the 27 SNPs in LDU from the HapMap LDU map, analysis yielded an estimated location that is only 0.3 kb away from the
CYP2D6 gene. This supports the use of the high marker density HapMap-derived LDU map for association mapping even
though it is derived from a much smaller number of individuals compared to the CYP2D6 sample. We also examine the
performance of 2-SNP haplotypes. Using the same modelling procedures and composite likelihood as for single SNPs,
the haplotype data provided much poorer localization compared to single SNP analysis. Haplotypes generate more
autocorrelation through multiple inclusions of the same SNPs, which could inflate significance in association studies. The
results of the present study demonstrate the great potential of the genome HapMap LDU maps for high-resolution mapping
of complex phenotypes. Genet. Epidemiol. 31:179–188, 2007. r 2007 Wiley-Liss, Inc.
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INTRODUCTION

Over the last few years, association mapping of
disease genes has developed into one of the most
dynamic research areas of human genetics. The
central aim is to identify genes which contribute
to complex diseases. The first step identifies
candidate regions in the genome that are asso-
ciated with the disease of interest. Subsequently,
association mapping focuses on finer localization
of disease determinants and the ultimate identifi-
cation of the causal variants. In contrast to linkage
analyses, which permit comparatively low-resolu-
tion mapping with the available family resources,
efforts to map genes of complex diseases
are concerned with exploiting linkage disequili-
brium (LD) between markers and putative dis-
ease-predisposing loci, usually from population

samples. LD analysis offers the prospect of fine
scale localization of genetic polymorphisms of
medical importance, particularly when single
nucleotide polymorphisms (SNPs) are densely
typed in a candidate region.

The development of LD maps led to the
characterization of the LD structure by assigning
a linkage disequilibrium unit (LDU) location for
each marker SNP [Maniatis et al., 2002]. These
maps are analogous to linkage maps and have
distances which increase monotonically with
physical maps but are superior in representing
the pattern of LD rather than just recombination
[Lonjou et al., 2003; Tapper et al., 2005]. The
properties of these maps were first examined by
Zhang et al. [2002], who found a remarkable
agreement between LDU steps and sites of meiotic
recombination using data of Jeffreys et al. [2001],
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which confirmed the location of recombination
hotspots by sperm typing. Subsequently, an
association mapping approach that utilizes LDU
maps was developed as a composite likelihood
approach which models association across many
markers [Maniatis et al., 2005]. The utility of LDU
maps was first examined by simulating each SNP
as causal from two existing real SNP data sets
[Maniatis et al., 2004]. It was shown that greater
power is achieved when mapping within an
LDU map compared to a map in kb, especially
in a densely typed region that is characterized by
intense recombination hotspots. Several factors
determine the power to identify a candidate
region for a gene contributing to a particular
phenotype, and within that region to localize a
causal polymorphism. The use of an appropriate
metric is essential. Maniatis et al. [2005] demon-
strated the superiority of the association z over
regression and correlation, for a 2� 2 table of
affection status by allelic dichotomy. The utility of
this method was investigated by refining the
localization of polymorphisms controlling the
poor-metabolizer phenotype in the CYP2D6
gene. Previous studies using single markers and
haplotypes identified a 390 kb region associated
with this phenotype. As a proof of principle,
27 SNPs on chromosome 22, which cover an
880 kb region flanking the CYP2D6 gene with
known location, were analysed. Using a metric
LDU map, the most common functional poly-
morphism within the gene was estimated to be
15 kb from its true location, within a 95%
confidence interval of 172 kb. Favourable results
using alternative association mapping strategies
have also been reported on the same data
[Morris, 2005; Waldron et al., 2006]. Having
investigated the properties of this method for
association mapping using single SNPs, the
present study evaluates the utility of haplotypes,
which have received a great deal of attention over
the last few years.

Data on about 0.6 and 1.2 million SNPs (release
13, 16, respectively) in four populations were
publicly released by the HapMap project as part
of their effort to foster the discovery of sequence
variants that affect common diseases, facilitate
development of diagnostic tools, and enhance
our ability to choose targets for therapeutic
intervention [International HapMap Consortium,
2003]. The enormous body of data created by
the HapMap Project enables the creation of
high-resolution, population-specific LD maps,
and their locations in LDU can be directly used

in association mapping studies to narrow a
candidate region and increase the precision of
localization. Therefore, the objective of this
paper is twofold: firstly, to follow up the study
by Maniatis et al. [2005] which was based
on single SNP tests by investigating the extent
to which haplotype data increase the power of
LDU maps in the much-studied association
mapping case of the CYP2D6 gene [Hosking
et al., 2002]; secondly, we compare the perfor-
mance of a high-density HapMap-derived LDU
map with a sample-specific LDU map (CYP2D6
region). Such a comparison throws light on direct
utilization of whole genome HapMap-derived
LDU maps in association mapping of common
diseases.

MATERIALS AND METHODS

DATA

The CYP2D6 gene affecting drug-metabolizing
activity was introduced by Hosking et al. [2002] as
a test of association mapping in a random sample
of 1,018 Caucasians. None of the 27 tested SNPs
are within the CYP2D6 gene. From the 1,018
individuals, 41 are identified as slow metabolizers
and therefore are called affected, and the remain-
ing 977 are called normal. The CYP2D6 locus
on chromosome 22q13.1 metabolizes about 20%
of commonly prescribed drugs [Evans et al., 2000].
There are four functional polymorphisms within
the gene (G1846A, delA2548, delT1707 and
A2935C), predicting 99% of slow metabolizers
[Sachse et al., 1997]. In this study we consider the
location of the most common functional poly-
morphism (G1846A, 20.7% allele frequency) as the
true location of the gene. A full description of the
data, including the rs numbers, is given elsewhere
[Hosking et al., 2002].

LDU MAPS

The LD maps [Maniatis et al., 2002] assign
markers to locations in LDU that describe the
underlying structure of LD in the form of a metric
map with additive distances. Therefore, every
SNP in the data is assigned two locations, one in
kb and the other in LDU. The construction of these
maps is based on pairwise marker association and
therefore any phenotypic information is comple-
tely ignored. The theory for constructing LD maps
and the LDU locations of the 27 SNPs for the
CYP2D6 region are given in Maniatis et al. [2005].
An LDU map of the whole chromosome 22 was
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also constructed using public release 16 of the
Phase I data from the HapMap Project. The
HapMap data (http://www.hapmap.org/) were
obtained on 60 parental DNA samples from Utah
Mormons of north-western European ancestry
collected by the Centre d’Etude du Polymor-
phisme Humain (CEPH). A total of 13,959 out
of 19,017 SNP genotypes were used for LDU map
construction after a screening procedure that
rejected markers with w2

1410 for the Hardy-
Weinberg test or a minor allele frequency less
than 5%. The CEPH population was chosen
because the 27 SNPs within an 880 kb region that
flanks the CYP2D6 gene on human chromosome
22 were typed in 1,018 Caucasians. Therefore,
two LDU maps were created based on pairwise
marker-by-marker association, one from the
CYP2D6 random sample described above and
the other from 13,959 SNPs covering the entire
chromosome 22 based on 60 parental individuals
(HapMap). Throughout this study, these two
maps are called CYP and HapMap, respectively.
Map locations in kb of the most common func-
tional polymorphism within the gene and the 27
predictive SNPs represent distances from SNP1
relative to the finished human genome sequence
assembly (NCBI build 34, UCSC July 2003, http://
genome.ucsc.edu/). Table I shows the kb and the
HapMap LDU maps that were assigned for each
of the 27 SNPs.

ASSOCIATION MAPPING

Single SNPs. Having ignored the phenotype
and used the pairwise marker-by-marker associa-
tion to create the CYP and HapMap LDU maps,
we adapted this metric to compute an association
metric ẑ from the 2� 2 table between the poor-
metabolizer phenotype (0,1 in this case) and
the two alleles of each marker SNP as: ẑ ¼ jDj=
fð1� RÞ, where D is the covariance between
affection status and the marker alleles, f is the
frequency of affected individuals and R is the
minor allele frequency [Maniatis et al., 2005]. In
this sample f 5 0.04 5 41/1018, but this frequency
may vary somewhat due to incomplete typing at a
given marker. This method is based on single
SNPs, and thus the number of tests performed is
equal to the number of markers. For the ith SNP
(i 5 1,y,27), the observed association ẑi has an
expectation zi estimated by the Malecot model as:
zi ¼ ð1� LÞMe�edi þ L, where e is the exponential
decline of association with distance di in kb or
LDU. The parameter M (intercept) reflects a

monophyletic or polyphyletic origin of suscept-
ibility alleles (i.e. proportion of disease alleles
transmitted from founders): it is 1 if disease alleles
are monophyletic or less than one if there are
multiple mutations at the disease locus. The
parameter L (asymptote) is the association at
large distance. It reflects the bias due to definition
of ẑ as positive, which is necessarily 40. However,
the object of this analysis is to estimate S, which is
the location of the disease gene in the marker map.
This parameter is introduced by substituting
distance di 5D(Si–S), where Si is the location of
the ith marker and can be expressed either in kb or
in LDU locations obtained from the CYP or
HapMap LDU maps. The Kronecker D is used
for map direction and assures a correct sign D5 1
if SiZS or �1 if SioS. Therefore, the model
becomes zi ¼ ð1� LÞMe�eDðSi�SÞ þ L. The analysis
of these data yielded M� 1 (0.82), reflecting the
four functional polymorphisms that are involved
in CYP2D6, which implies several ancestral
alleles.

Given the observed associations ẑi the Malecot
parameters are estimated iteratively using com-
posite likelihood which evades the heavy Bonfer-
roni correction by combining information over
all loci as L ¼ �Kiðẑi � ziÞ

2, where ẑ and z are the
observed and expected association values, respec-
tively, at the ith marker SNP. Their squared
difference is weighted by an amount of informa-
tion, Ki, which is estimated as: Kz ¼ w2

1=ẑ2, where
w2

1 is the Pearson’s w2
1 from the 2� 2 table (affection

status by SNP alleles, Table I). Following Maniatis
et al. [2005], we used four different sub-hypoth-
eses of the Malecot model to test the existence of a
causal polymorphism. The baseline is sub-hypoth-
esis or Model A with none of the parameters
estimated. The intercept has M 5 0 and represents
the null hypothesis of no association across the
region. The parameter L is not iterated but can
be predicted (Lp) from the mean deviation of
information Ki. Model B conforms to Model A but
with L iterated. It follows that any increase in
L above the predicted asymptote Lp provides
evidence of a causal polymorphism within the
significant region in question, but without precise
localization. Model C allows the estimation of
both M and S. Model D is as Model C but with L
iterated. Therefore, the A–B contrast tests for
significance in the region, while the contrasts
A–C and A–D test for a disease determinant at
location S, or in the present study, the consensus
location of CYP2D6. The location error in this case
is the estimated distance from the model (S) to the

181Single SNPs, Haplotypes, and Whole-Genome LD Maps

Genet. Epidemiol. DOI 10.1002/gepi



location of the most common functional poly-
morphism (G1846A ) at 525.3 kb.

The significance for the three contrasts is tested
by the use of w2. For example the A–C test in
large-sample theory has a w2

2 ¼ ðLA � LCÞ=VC,
where VC is the residual error variance of Model
C and is computed by dividing the weighted sum
of squares with the degrees of freedom m to give
V 5LC/m. The degrees of freedom m equals the
number of SNPs minus the number of parameters
in the model k (e.g. model C has two parameters
and thus the A–C test has a w2 with 2 df). For large
samples, an F test 5 w2/k. However, an F-test is
more reliable than w2 when m is small. Here we
only have 27 SNPs and hence 27 tests for the
single SNP analysis. We recognize that estimates
of w2 that were previously published by Maniatis
et al. [2005] are based on a small number of
marker tests and therefore we now implement an

F test for computing significance. The F-value
is estimated as the ratio of the between models
mean square to the error mean square (error
variance V). For the A–C contrast the significance
test is: Fðk;mÞ ¼ LA�LC

k =VC. The F tests for the A–B
and A–D contrasts can be computed the same
way using the corresponding values. Subse-
quently, we converted these F-values to a w2

1
(Appendix 1). This was done by obtaining
the corresponding probability (P) of the F-test
using a sub-routine from Press et al. [1994]. Then
the w2

2 with 2 degrees of freedom is simply �2
ln(P). The w2

2 is then converted to w2
1 using

the Hastings approximation [Abramowitz and
Stegun, 1964]. Therefore, the significance of the
A–B, A–C and A–D contrasts is now tested by the
use of w2

1 which is corrected for m. The 95%
confidence interval (CI) for the estimated location
Ŝ was obtained as: Ŝ� t SE, where t is the
tabulated value of Student’s-t test for m degrees
of freedom and P 5 0.05. The empirical standard
error of parameter Ŝ is SE ¼ sS

ffiffiffiffi

V
p

, where sS

is the nominal standard error of Ŝ estimated
by quadratic approximation of the composite
likelihood. The corresponding lod for every
point with S specified can also be estimated
as: w2

1=2 ln 10. The w2
1 is obtained from

the Fðk;mÞ ¼ ½LCðSÞ � LCðŜÞ�=VC, where LCðŜÞ
and VC are the composite likelihood and error
variance under model C when Ŝ was estimated.
Both values are constant, while estimates of
LCðSÞ were obtained by fitting the Malecot model
to specified values of S in kb or LDU. Therefore,
the lod surfaces for given values of S can be
obtained for both maps and models. These
surfaces can also be used to estimate the lod
support interval as an alternative to the con-
fidence interval. For comparison with the 95% CI
the corresponding 95% support interval is the lod
that equals 0.834, which is the lod for the 95%
tabulated w2

1 (3.84/2ln10).

HAPLOTYPES

Haplotypes have received enormous attention
over the last few years. Although the use of
composite likelihood allows the analysis of single
markers tests simultaneously, haplotypes raise
important problems of definition and estimation
when they are used in association mapping (e.g.
combined information from multiple haplotypes).
In this study, we have modelled the simplest case,
considering only adjacent SNPs (2-SNP haplosets),
e.g. SNP pairs 1,2 and 2,3. The midpoints of their

TABLE I. The kb and HapMap LDU maps of the
CYP2D6 region

SNPa kb
HapMap

LDU
single SNPs

w2
1

2-SNP
haplotypesb w2

1

SNP1 0 0.000 5.5 —
SNP2 88 0.000 7.1 3.3
SNP3 177 0.000 2.0 2.6
SNP4 205 0.000 4.5 1.7
SNP5 238 0.376 1.1 2.8
SNP6 252 0.635 1.4 1.3
SNP7 252 0.635 0.8 0.7
SNP8 283 0.774 13.0 4.7
SNP9 294 1.049 54.1 28.3
SNP10 334 1.049 18.6 32.4
SNP11 368 1.456 32.1 46.9
SNP12 389 1.559 109.7 54.4
SNP13 423 1.609 42.5 54.6
SNP14 481 1.609 39.3 21.9
SNP15 500 1.615 41.7 113.7
SNP16 510 1.615 21.7 19.1
SNP17 510 1.615 35.9 16.5

CYP2D6 525
SNP18 539 1.682 123.6 58.5
SNP19 557 1.689 26.2 100.3
SNP20 657 1.809 186.9 79.2
SNP21 675 1.843 13.1 72.0
SNP22 714 4.243 0.0 3.1
SNP23 740 4.782 0.2 0.2
SNP24 799 5.135 2.2 10.8
SNP25 823 5.303 0.5 0.1
SNP26 853 5.392 3.0 0.8
SNP27 879 7.718 1.2 1.2

aSee Hosking et al. [2002] for database IDs and primers.
bAdjacent SNPs, e.g. SNP pairs 1 and 2, 2 and 3.
Pearson’s w2

1 values from the 2� 2 table between the PM
phenotype and single marker alleles or haplotypes

182 Maniatis et al.

Genet. Epidemiol. DOI 10.1002/gepi



kb and LDU locations are assigned to each
haploset. The statistical inference of haplotypes
was conducted by Hill [1974] for a pair of diallelic
loci in a panmictic population. Using this algo-
rithm, the 3� 3 table of genotypes for each pair of
SNPs (AACC, AACc, AAcc), (AaCC, AaCc, Aacc),
(aaCC, aaCc, aacc) was reduced to a 2� 2
haplotype table (AC, Ac, aC, ac) for affected and
normal individuals separately. Subsequently, we
dichotomized the four haplotypes, AC, Ac, aC, ac,
from each haploset by selecting the haplotype
with the greatest value of Pearson’s w2

1 by the z
test. This test was based on the 2� 2 table of
affection status by haplotype dichotomy (Table I),
for example, AC vs. Ac1aC1ac, taking the
estimated haplotype frequencies from affected
and normal as counts. Estimates of z for each of
the 26 haplosets and their midpoint locations in kb
and LDU were used under the same modelling
procedures as for single SNPs. No correction was
used for selecting the most significant haplotype,
and so this procedure might be expected to
exaggerate significance, as well as inflating the
covariance between adjacent pairs that share the
intervening marker.

RESULTS

The block-step structure of the CYP2D6 region
can be presented graphically by plotting both the
HapMap and CYP LDU locations on the kb map

(Fig. 1). There are 277 SNPs in the HapMap LDU
map that cover the CYP2D6 region, but only the
corresponding LDU locations for the 27 SNPs are
plotted. Similar patterns were observed even
though the samples that created the two maps
were remarkably different in sample size and
SNP density (277 vs. 27 SNPs and 60 vs. 1018
individuals). Most importantly, these two maps
yielded the same LDU length, which demon-
strates additivity of map distances and robustness
to SNP density.

Table II shows the localization of CYP2D6 when
SNP locations are expressed in kb and LDU. The
A–C contrast shows a large increase in w2 when
the data are fitted to the CYP LDU map ðw2

1 ¼

74:1Þ, compared to the map in kb ðw2
1 ¼ 47:4Þ. The

location error is only 14.9 kb, compared with an
error of 57 kb in the kb map. The 95% interval is
also considerably worse for kb, since the true
location is not included within those limits. A
smaller error variance and greater power ðw2

1 ¼

76:4Þ is observed with HapMap LDU locations
compared to CYP LDU. The location ðŜÞ was
estimated to be 524.8 kb, which is on top of the
CYP2D6 gene and less than 1 kb away from the
location of the most common functional poly-
morphism (525.3 kb). This decrease in location
error, from 14.9 to 0.5 kb, is the consequence of
mapping within the LDU locations that were
obtained from the HapMap data, instead of the
locations that were based on marker-by-marker
association of the CYP2D6 data. Although the
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Fig. 1. The graph of the LDU map for the CYP2D6 region. Vertical line indicates the location of the locus at 525.3 kb.
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high resolution of the HapMap data greatly
refined localization of the gene, it failed to reduce
the confidence interval further. The 95% CI
is 20 kb wider for the HapMap LDU (197 kb)
compared to the CYP LDU map (177 kb). It is
anticipated that new releases of HapMap will
contain higher marker densities and provide finer
LD structure which may reduce this interval even
further. The computation of the 95% LOD support
intervals yielded smaller difference (4 kb) between
the two LDU maps compared to the CI (20 kb).
However, these intervals were somewhat greater
than the 95% CI (Table II). This is because the
latter is computed using a normal theory approx-
imation, while the LOD support tends to be
more conservative, since SNPs within a block
will have the same lod because they have identical
locations in LDU. Therefore, computation of the
support interval can reflect the block-step
pattern of the region. The CYP and HapMap
support intervals are very similar as a conse-
quence of their similarity in LDU structure (Fig.
1). Plotting the lods against the LDU map may
reveal different maxima other than the maximum
likelihood estimation and that may have impor-
tant applications to genome-wide scans where
association mapping may give rise to several
causal sites. In a simulation study, investigation
of false-positive indications showed that the

chi-square distribution yielded an acceptable
goodness of fit, demonstrating that composite
likelihood works very well despite its assumption
of independence among the marker SNPs [Man-
iatis et al., 2004].

The same modelling procedures on the HapMap
LDU map for associations between affection
status and dichotomized 2-SNP haplotypes in-
creased substantially the location error under
model C (152 kb, Table III). Although the 95%
confidence and support intervals were consider-
ably smaller that the single SNP analysis, the
limits for the CI did not include the CYP2D6 gene,
while the support interval gave a limit only 6 kb
(531 kb) away from the functional polymorphism
(525.3 kb). Unlike the single SNP analysis, great
inconsistencies between models C and D were
found with the use of haplotypes. Model D
yielded better localization with an error of 19 kb
but considerably higher than the 0.3 kb error from
single SNPs. The 95% CI and support intervals
(162 and 163 kb, respectively) were also reduced
compared to model C, but again their limits only
just covered the gene. Table II shows that 2-SNP
haplotypes did not perform as well as the single
SNPs using the HapMap LDU map but the same
holds true for the CYP LDU and map (result not
shown). The analysis of the 2-SNP haplotypes
yielded great inconsistencies and increased loca-

TABLE II. Localization of CYP2D6 using different maps

Map Contrast V w2
1 Ŝkb

Location error
jŜ ¼ 525:3jkb

95% confidence interval
in kb

95% LOD support
internal in kb

kba A–C 3.16 47.4 468.3 57.0 427–510b (83) 427–521b (94)
CYP LDU A–C 1.06 74.1 510.4 14.9 406–583 (177) 407–603 (196)
HapMap LDU A–C 0.97 76.4 524.8 0.5 372–569 (197) 372–572 (200)

V is the error variance; w2
1 with 1 degree of freedom tests association at location Ŝ (see materials and methods for contrasting models A and

C); 525.3 kb is the true location of the common polymorphism; values in parentheses are the total width for the confidence intervals.
aThere is only one kb map, based on UCSC July 2003 assembly.
bInterval does not include the CYP2D6 locus

TABLE III. Comparison of single SNPs and haplotypes

Analysis Map Contrast V w2
1 Ŝkb

Location error
jŜ ¼ 525:3jkb

95% confidence
interval in kb

95% LOD support
internal in kb

Single SNPs HapMap LDU A–C 0.97 76.4 524.8 0.5 372–569 (197) 372–572 (200)
A–D 0.99 71.1 525.0 0.3 372–570 (198) 372–601 (229)

Haplotypes HapMap LDU A–C 0.54 83.6 372.3 153.0 367–521a (152) 369–531 (162)
A–D 0.43 82.9 506.3 19.0 372–534 (162) 371–534 (163)

V is the error variance; w2
1 with 1 degree of freedom tests association at location Ŝ under models C and D (see materials and methods for

contrasting models); 525.3 kb is the true location of the common polymorphism; values in parenthesis are the total width for the confidence
intervals.
aInterval does not include the CYP2D6 locus.
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tion errors compared to single SNPs. These
differences were also accompanied with increased
estimates of w2

1. This is likely to be due to deflated
estimates of error variance (0.54 and 0.97 for
HapMap and CYP, respectively). The 2-SNP
haplotypes were constructed by using each
marker twice without taking into account the
expected increases in the covariance between
haplosets. This inflation of information may well
lead to deflated error variances that exaggerate the
significance level.

DISCUSSION

A popular belief is that haplotypes always
provide greater power to detect disease genes
when the SNPs tested are not functional but in LD
with the causal locus. Interest in the analysis of
haplotypes has increased as a result of the
emphasis given by the International HapMap
Project and other related initiatives [Salem et al.,
2005]. Here we present evidence that haplotypes
lead to poor estimates of localization and greater
inconsistencies compared to single SNPs in an
association analysis of 27 SNPs flanking the
CYP2D6 gene. We have treated the simplest case,
considering only haplosets of size 2 with haplo-
types inferred for affected and normal from
adjacent pairs of SNPs. The optimal number of
SNPs in a haploset is not yet known. The simplest
haploset of size 2 is particularly useful because
intervals do not overlap (SNP intervals 1,2 and 2,3
do not overlap). However, even this simplest case
of haplotypes has a drawback. With the exception
of the first and the last markers in the region,
all SNPs are used twice and this must account in
part for the estimates of w2 being increased by
approximately 60%. We attribute this outcome to
the autocorrelation generated by the duplicated
SNPs among haplosets, which deflates the error
variance for association mapping. As a result,
power is exaggerated and localization is poor
compared to single SNPs. Longer windows of 3 or
more SNPs overlap (e.g. 1,2,3 and 2,3,4), generat-
ing higher autocorrelations as the number of SNPs
increases. Recent descriptions have focused on
delimiting blocks of low haplotype diversity
[Gabriel et al., 2002]. One option is to ignore
overlapping windows and analyse haplotype
blocks instead [Clark, 2004]. This approach will
generate additional problems because block-find-
ing algorithms are sensitive to marker density
[Ke et al., 2004]. Block definition is arbitrary, and

hence the beginning and end sites of a haplotype
are unknown. To evade this problem, Lin et al.
[2004] proposed sliding windows of all positions
and lengths, but such designs will generate even
higher autocorrelation because of the increased
number of repeated SNPs. Furthermore, long
haplotype windows have the problem of variable
degrees of freedom, since different haplosets may
yield different number of significant haplotypes.
This design prohibits use of the z metric because
of the difficulty in dichotomizing a large number
of haplotypes by affection status, unless other
metrics such as regression are used. If the choice is
to use all haplotypes from the specific haploset,
then the models will be over-parameterized and
the tests computationally intensive. Longer hap-
lotypes can be more ambiguous, especially in
regions of recombination since they require phase
information from diplotypes. Nevertheless, there
are many ways that haplotypes could be used in
association mapping, and powerful analytical
tools have been proposed with favourable results
[Morris, 2005]. In a comprehensive review of
literature that is rapidly growing, Salem et al.
[2005] showed that there are more than 40
published haplotyping methods. Our haplotype
analysis did not provide better estimates of
localization compared to single SNP tests, but
the number of different ways to use haplotypes is
limitless and alternative approaches that account
for autocorrelation may obtain more favourable
results.

Several authors have suggested that analysis of
single SNPs loses power, especially for rare
mutations [Lin et al., 2005], but that depends on
the approach used for single SNP analysis.
Association mapping is possible without an LD
map, simply by selecting the most significant SNP.
Single SNPs will not provide sufficient signal to
narrow the region of interest, but this is also true
when the most significant haplosets are selected.
Hosking et al. [2002] observed significant associa-
tions with 14 SNPs, and the region of significance
around CYP2D6 was reported to be 390 kb.
Plotting the P-values on the kb map gives a
pronounced ‘‘hole’’ in significance level for the
CYP2D6 locus because two distant SNPs on either
side of the gene are highly significant, making the
surface bimodal (SNPs 12 and 18, Table I).
Analysis of 2-SNP haplotypes also showed
bimodality where the SNPs 17–18 haplotype ðw2

1 ¼

58:5Þ that contained the gene, was flanked by
haplotypes on either side of the gene with greater
w2

1 values (Table I). Hosking et al. [2002] and Meng
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et al. [2003] also considered haplotypes in sliding
windows of size 5. Although the levels of
significance were considerably higher than single
SNPs, haplotype analysis did not further refine
the support interval. Selection of significant SNPs
has the risk of losing information about other
markers, and accepting a heavy correction that is
unreasonable in a genome-wide scan. It further
assumes that the functional SNPs have been
included in the study. Although our multipoint
approach is based on single SNPs, all association
tests are considered simultaneously in a compo-
site likelihood. Most importantly, it evades a
heavy Bonferroni correction, giving a simple and
powerful approach based on a 2� 2 association
table where the alleles of every SNP have been
dichotomized by disease association (affected,
normal). Single SNPs can be analysed in random
samples, but also in cases and controls using an
ascertainment correction based on the frequency
of affected in the general population [Maniatis
et al., 2005]. Data may be family-based where the
affected offspring are the cases, while the non-
transmitted alleles from the parents form pseudo-
controls. The modelling procedures could employ
various metrics other than z, (e.g. regression can
be used for quantitative traits).

Some of the scepticism that surrounds the use of
single SNPs arises because the methods do not
consider that SNPs are in LD with one another.
However, we have demonstrated that greater
power and precision for localization are achieved
with an LDU map, which describes the under-
lying LD structure. The SNPs in an LD map can be
located in a block or in a step. Jeffreys et al. [2001]
has shown that single-sperm genotyping can give
recombination rate estimates at very fine scales,
and Zhang et al. [2002] have shown that there is
close agreement between LDU steps and sites of
meiotic recombination. Sperm typing has two
major limitations: it cannot determine female
recombination, and can only be applied to small
regions due to its high cost and effort. LDU maps
on the other hand can be easily constructed for the
entire genome using the data provided by the
HapMap Project [Tapper et al., 2005]. These fine-
scale metric maps provide valuable information
about the pattern of LD. Using whole-chromo-
some linkage maps at low resolution, Tapper et al.
[2005] have shown that more than 90% of the
variation in LDU is explained by recombina-
tion. Low-resolution linkage maps are based on
families with few meioses, whereas LDU
maps reflect historical meiotic events. Although

recombination dominates the LD structure, the
great advantage of the LDU map method is that it
models the decline of LD, which is due to
pressures other than recombination, such as
mutation, selection, and long-range migration.

The method presented here makes direct use of
the HapMap data. The construction of HapMap
and CYP maps yielded the same LDU length and
similar structure. This paper examines for the first
time the prospects for utilizing genome-wide LD
maps for association studies in complex diseases.
The results presented here provide evidence that
small differences in the LDU map can influence
the precision of association mapping. The fine-
scale HapMap LDU map of chromosome 22
provided sufficient resolution to locate the
CYP2D6 gene with a marginal error of 0.3 kb,
compared to the 14.9 error that was obtained by
mapping within the CYP LDU map. However, the
HapMap LDU map did not reduce the confidence
intervals from the original estimates based on the
CYP map. The ultimate goal of the HapMap
Project is more than three million SNPs [Interna-
tional HapMap Consortium, 2003]. We anticipate
that the future HapMap releases and higher-
resolution maps have the potential to further
narrow the confidence interval.

Our approach for disease gene association
mapping by LD is based on a model with
evolutionary theory, which incorporates a para-
meter for the location of the causal polymorphism.
When the locations of marker SNPs are expressed
in LDU, then greater power was achieved to refine
the location in the significant CYP2D6 region.
LDU maps ignore any phenotypic information.
Their goal is to characterize the fine-scale pattern
of LD in the genome. The main advantage of our
proposed mapping approach is that it makes
direct use of the HapMap data. Whether the
objective is a genome-wide scan or a study on
candidate regions, the HapMap LDU maps could
be utilized directly and independently of the
disease in question. Furthermore, the HapMap
project has been developed for four different
populations, Yoruba, Japanese, Chinese and
CEPH, and therefore population-specific HapMap
LDU maps offer versatility in association map-
ping studies. These population-specific LD maps
have been incorporated in the Linkage Disequili-
brium Location Data Base (LDDB), using geno-
type data for all four populations. LDDB also
includes the most informative linkage map [Kong
et al., 2004] together with the physical and
cytogenetic maps.
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The LDMAP program for the construction of
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APPENDIX 1

An F(k,m) statistic follows an F distribution with k and m numerator and denominator degrees of
freedom, respectively. In this study, k is the difference in numbers of parameters estimated between a null
hypothesis and a more general hypothesis with m df, and m equals the number of SNPS minus the number
of parameters estimated in the model. An F(k,m) test is converted to a w2

1 in two steps: The first step obtains
the corresponding probability P of F(k,m) using an incomplete beta function based on a sub-routine given
by Press et al. [1994, p 619]. The second step converts the w2

2 with 2 df, which is -2 ln(P), to a w2
1 with 1 df

using the Hastings approximation [Abramowitz and Stegun, 1965, p 933]. The table below shows results
from our conversion procedures whereby tabulated F-values (upper critical values of the F distribution)
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for various degrees of freedom and for two different levels of significance (95% and 99%) are converted to
w2

1 estimates. These tabulated F-values can be found in most statistical textbooks. Here we give F-values
from the tables presented by Beyer [1966], and show conversions from extreme values (e.g. F1,1 or F120,1) to
accurate estimates of w2

2 and w2
1 (e.g. estimated values of w2

1 correspond precisely to tabulated w2
1 of 3.84 and

10.82 for 95% and 99%, respectively).

Tabulated F-values Numerator df (p) Denominator df (n–p)

Estimated

Significance levelw2
2 w2

1

161.40 1 1 5.991 3.843 95%
6.61 1 5 5.992 3.844
4.96 1 10 5.988 3.840
4.35 1 20 5.990 3.842
3.92 1 120 5.991 3.843
253.30 120 1 5.992 3.843

405300.00 1 1 13.816 10.829 99%
47.18 1 5 13.815 10.829
21.04 1 10 13.816 10.829
14.82 1 20 13.816 10.830
11.38 1 120 13.815 10.829
634000.00 120 1 13.815 10.829

For small m df, the conversion is more conservative compared to large m. For example, the tabulated
value for F1,120 approaches the estimated w2

1.
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