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ABSTRACT
Traditional association mining algorithms use a strict definition of
support that requires every item in a frequent itemset to occur in
each supporting transaction. In real-life datasets, this limits the
recovery of frequent itemset patterns as they are fragmented due
to random noise and other errors in the data. Hence, a number
of methods have been proposed recently to discover approximate
frequent itemsets in the presence of noise. These algorithms use
a relaxed definition of support and additional parameters, such as
row and column error thresholds to allow some degree of “error”
in the discovered patterns. Though these algorithms have been
shown to be successful in finding the approximate frequent item-
sets, a systematic and quantitative approach to evaluate them has
been lacking. In this paper, we propose a comprehensive evalua-
tion framework to compare different approximate frequent pattern
mining algorithms. The key idea is to select the optimal parameters
for each algorithm on a given dataset and use the itemsets generated
with these optimal parameters in order to compare differentalgo-
rithms. We also propose simple variations of some of the existing
algorithms by introducing an additional post-processing step. Sub-
sequently, we have applied our proposed evaluation framework to
a wide variety of synthetic datasets with varying amounts ofnoise
and a real dataset to compare existing and our proposed variations
of the approximate pattern mining algorithms. Source code and the
datasets used in this study are made publicly available.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—Data Min-
ing; D.2.8 [Software Engineering]: Metrics—performance mea-
sures; I.5 [Pattern Recognition]: Miscellaneous
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1. INTRODUCTION
Traditional association mining algorithms use a strict definition

of support that requires every item in a frequent itemset to occur
in each supporting transaction. In real-life datasets, this limits the
recovery of frequent itemset patterns as they are fragmented due to
random noise and other errors in the data.

Motivated by such considerations, various methods [11, 7, 8, 6,
5, 2] have been proposed recently to discover approximate frequent
itemsets (often called error-tolerant itemsets (ETIs)) byallowing
itemsets in which a specified fraction of the items can be missing.
Please see figure 1 for a conceptual overview. The most basic ap-
proach is to require only that a specified fraction of the items in a
collection of items and transactions be present. However, such a
‘weak’ ETI [11] provides no guarantees on the distribution of the
items within this ‘block,’ i.e., some rows or columns could be com-
pletely empty. To address this issue, a ‘strong’ ETI was defined
[11], which required that each row must have at most a specified
fraction of items missing. The support of strong ETIs is simply
the number of transactions that support the pattern, as in the tradi-
tional case, but support does not have the anti-monotone property,
i.e., support can increase as the number of items increases.Thus, a
heuristic algorithm for finding strong ETIs was developed.

Indeed, the lack of an anti-monotone support measure is one of
the factors that has made the construction of algorithms forfinding
approximate itemsets very challenging. One solution that leads to
an anti-monotone support measure is to allow only a fixed number
of missing items in each row [7]. This approach does not enforce
any constraint on the number of items missing in a column, andis
unappealing in that bigger itemsets should be allowed more miss-
ing items than the smaller ones. Another potential solutionis an
approach that uses ‘dense’ itemsets [8]. The support of an approx-
imate itemset is defined in terms of the minimum support of every
subset and is anti-monotone, but one may argue whether the defini-
tion of an approximate pattern used by this approach is as appealing



as some of the other definitions since different subsets of items may
be supported by different transactions.

Both strong and weak ETI patterns can have empty columns.
To handle this situation, approximate frequent itemsets (AFI) [5]
were proposed. AFIs enforce constraints on the number of miss-
ing items in both rows and columns. One of the advantages of
AFIs over weak/strong ETIs is that there is a limited versionof an
anti-monotone property that helps prune the search space. How-
ever, this algorithm cannot guarantee that no AFIs are overlooked
since a heuristic approach is used to verify the column constraint.
Although AFIs might seem like the most natural and complete def-
inition of an approximate itemset pattern, one might argue that it is
easier and perhaps more meaningful to find approximate itemsets
if at least some transactions contain all the items comprising an
approximate itemset. This formed the motivation for AC-CLOSE,
which finds AFIs based on the notion of core itemsets [2].

Although these approaches have shown to be successful in find-
ing the approximate frequent itemsets, a systematic and quantita-
tive approach to evaluate the patterns they generate is still lacking.
Indeed, most of the papers on approximate itemsets have provided
only limited comparisons with other work: The paper that intro-
duced AFIs [5] only presented a comparison to strong ETIs [11],
while AC-CLOSE [2] only compared against AFIs [6, 5].

Contributions of this paper:
• We perform a comprehensive evaluation of algorithms for

finding approximate itemsets. Building on the initial work
by others, we propose an evaluation framework to compare
various frequent pattern mining algorithms. We apply our
evaluation framework to compare different approximate pat-
tern mining algorithms based on their robustness to the input
parameters (minsup, ǫr, andǫc) and on the quality of the
patterns (measured in terms of significance and redundancy).

• Our work highlights the importance of choosing optimal pa-
rameters. In general, approximate pattern mining algorithms
use various parameters and given that each parameter can be
set to many different values, the performance of various al-
gorithms can be greatly affected. Thus, it is more reasonable
and fair to compare each algorithm’s performance using its
own optimal parameters in the parameter space.

• We propose simple variations of the existing algorithms pro-
posed in [11] and [8] by adding an additional step to check if
each candidate approximate pattern also satisfies the column
error threshold (ǫc). These modified algorithms not only gen-
erate high quality patterns but also compare well with those
generated by ‘AFI’ ([5]) and ‘AC-CLOSE’ ([2]).

The source codes of all the algorithms as well as synthetic and real
data sets used in this study are available at the following website:
www.cs.umn.edu/∼kumar/ETI/.

Organization: The remainder of the paper is organized as fol-
lows. In Sections2, we briefly review the existing algorithms for
approximate frequent pattern mining and we also propose simple
variations of some of them. Section 3 gives the details of ourpro-
posed evaluation methodology, including the definition of measures
and how to select optimal parameters for each algorithm on a given
dataset. We discuss our experimental results in Section 4 and con-
clude with final remarks and future work in Section 5.

2. APPROXIMATE FREQUENT PATTERN
MINING ALGORITHMS

Below, we briefly define different generalizations of frequent
itemsets, which can generally be viewed as a hierarchy as shown
in Figure 1. It is important to note that each of these definitions

Figure 1: A conceptual hierarchy of approximate pat-
terns/algorithms

will lead to a traditional frequent itemset if their error-tolerance is
set to0. However, first we define a set of common terminology.
Assume, we have a binary transaction database consisting ofa set
I={i1, . . . , im} of items, and a set T={t1, . . . , tn} of transactions,
where eachti has a subset of items fromI . It is useful to think of
such a database as an-by-m binary matrixD, with each column
corresponding to an item, and each row corresponding to a trans-
action. ThusDj,k = 1 if ik ∈ tj , and0 otherwise. An itemset (or
pattern)I ′ is said to be a frequent itemset if its support (the number
of transactions it appears in,|{T ′ : I ′ ⊂ T ′}|), is more than some
user-specified threshold denoted byminsup.

2.1 Error Tolerant Itemsets (ETIs) - GETI
The concept of weak and strong ETI was defined in [11]. An

itemsetI ′ at supportminsup is said to be a weak ETI with tol-
eranceǫ if ∃T ′ ∈ T such that|T ′| ≥ minsup and the following

condition holds:
P

i∈I′
P

t∈T ′ Dt,i

|I′|∗|T ′|
≥ 1 − ǫ

It is difficult to find all weak ETIs, since we effectively haveto
search the entire pattern space without any pruning. Also, we can
have both rows and columns included that consist entirely ofzeros,
since there is no constraint as to where the 0’s can occur within the
itemset. An itemsetI ′ at supportminsup is said to be a strong
ETI with toleranceǫ if ∃T ′ ∈ T such that|T ′| ≥ minsup and the

following condition holds∀t ∈ T ′:
P

i∈I′ Dt,i

|I′|
≥ 1 − ǫ

This implies that for a given set of parameters, any strong ETI
is also a weak ETI (figure 1). Also, the definition of strong ETI
helps to eliminate the possibility of adding spurious transactions. A
greedy approach for computing strong ETIs is also proposed [11].

2.2 Recursive Weak ETIs - RW
This algorithm was developed by Seppänen and Mannila and

named (somewhat misleadingly) dense itemsets [8]. The ideawas
to add a recursive condition to the definition of a weak ETI in order
to overcome weak ETIs inherent susceptibility to spurious items.
Thus an itemsetI ′ is a recursive weak ETI ifI ′, as well as all sub-
sets ofI ′, are weak ETIs. One key point to note here is the set of
transactions for the subset of items do not necessarily needto be the
same. While this may seem to be a drawback, it still guarantees that
any set of items within the itemset are related to one another. This
algorithm also has an advantage of apriori-like pruning meaning if
an itemset is not a recursive weak ETI, no superset of it can possi-
bly be a recursive weak ETI. We denote this algorithm as ’RW’ in
this paper (see figure 1 for its relationship to other algorithms).

2.3 Approximate Frequent Itemsets (AFI)
The concept of an Approximate Frequent Itemset (AFI) was de-

veloped in [5], although it was earlier introduced in [9]. The idea is
to extend the concept of strong ETI to include separate row and col-



umn constraints (ǫr andǫc respectively). An itemsetI ′ at support
minsup is said to be an AFI with toleranceǫr andǫc if ∃T ′ ∈ T

such that|T ′| ≥ minsup and the following two conditions hold:

∀i ∈ I ′,
P

t∈T ′ Dt,i

|T ′|
≥ 1 − ǫc and∀t ∈ T ′,

P

i∈I′ Dt,i

|I′|
≥ 1 − ǫr.

From the above properties, it can be seen that AFIs are a sub-
set of strong ETIs (see figure 1). One of the advantage of AFIs
over weak/strong ETIs is that a relaxed version of an anti-monotone
property holds for this pattern.

2.4 AC-CLOSE
AC-CLOSE [2] uses a core pattern constraint in addition to row

(ǫr) and column (ǫc) error thresholds to find frequent approximate
patterns. Specifically, this algorithm uses a parameterα to con-
trol the percentage of supporting transactions that must have all the
items in an itemset. This essentially further filters out patterns gen-
erated by the algorithm ‘AFI’ (see figure 1). In [2], an efficient
top-down mining algorithm was also proposed to discover approxi-
mate frequent patterns with core patterns as the initial seeds. In this
paper, we apply the additional parameterα as a post-processing
step to ‘AFI’ patterns to obtain ‘AC-CLOSE’ patterns. Conceptu-
ally, the patterns should be equivalent to the original AC-CLOSE,
our implementation is not as efficient as the original ‘AC-CLOSE’
implementation.

2.5 Error Tolerant Itemsets (ETIs) with strong
post-processing - GETI-PP

In order to overcome the possibility that ‘GETI’ can pick spu-
rious items, we propose a variation of ‘GETI’ which uses an addi-
tional parameter (ǫc) to make sure every item in each ETI generated
by the algorithm ‘GETI’ also satisfies the column constraint.

2.6 Recursive Weak ETIs with strong post pro-
cessing - RW-PP

In order to overcome the drawback of both strong ETIs and re-
cursive weak ETIs, we added a post-processing step in algorithm
‘RW’ to make sure that all recursive weak ETIs also meets a cer-
tain column threshold (sayǫc). Hence, patterns generated using
‘RW-PP’ lie in the intersection of ‘RW’ and strong ETI (figure1).

2.7 Recursive Strong ETIs - RS
Since the recursive weak definition seems to work well in prac-

tice [8], a natural step is to define a recursive strong ETI, where
each subset must also be a recursive strong ETI (figure 1).

3. EVALUATION METHODOLOGY
The evaluation approach given in [3] compares the result quality

of different noise-tolerant models using precision and recall. An-
other evaluation framework for frequent sequential pattern mining
[4] considers recoverability, spuriousness, redundancy and num-
ber of extraneous items as quantitative measures and influenced
the design of our evaluation framework. Building upon the def-
inition of recoverability and spuriousness given in [4], below we
describe the evaluation measures in more detail. Note, we define
B = {b1, . . . , bm} to be the set of base itemsets (“true” patterns)
andF = {f1, . . . , fn} to be the set of found patterns.

3.1 Recoverability
This quantifies how well an approximate pattern mining algo-

rithm recovers the base patterns. In this definition, recoverability
is similar to recall. To measure the recoverability of the true pat-
terns using the found patterns, we create a matrix of size|F |X|B|,
whoseijth element (ith row andjth column) is represented as

fbij , i.e, the number of common items in found patternFi and
base patternBj . We consider the recoverability of any base pattern
Bj to be the largest percent of the itemset found by any patternFi

that is associated withBj . For illustration purposes, as shown in
table 1, for each base pattern (each column in table 1), we puta
∗ on an entry which is maximum in that column. If there is a tie
among found patterns for the maximum value, we put∗ on mul-
tiple entries. For computing the recoverability of the basepattern
Bj , we take any entry with a∗ on it and divide it by the size ofBj .
When we have more than one true pattern in the data, we need to
combine the recoverability for each pattern into one measure. This
is done by taking a weighted average (bigger patterns count more
than smaller patterns) over all base patterns.

recoverability(B) =

P

j=1...|B| maxi=1...|F |fbij
P

j=1...|B| |Bj |
(1)

3.2 Spuriousness
Although recoverability gives a good idea of what fraction of

patterns are recovered by an algorithm, it does not give a complete
picture. It is possible that a pattern is recovered solely because a
found pattern contained a large number of items, not all necessarily
related to the base pattern. Thus just as precision is complemen-
tary to recall, we need another sibling measure of recoverability
(recall) that measures the quality of the found patterns. The quality
of a pattern can be estimated using the spuriousness measurewhich
computes the number of items in the pattern that are not associated
with the matching base pattern (i.e., are spurious). Hence,preci-
sion of a found pattern can be defined as1 − spuriousness. For
illustration purposes, as shown in table 1, for each found pattern
(each row in table 1), we put a# on an entry which is maximum
in that row. If there is a tie among base patterns for the maximum
value, we put a# on multiple entries in a row. For computing the
spuriousness of the found patternFi, we take any entry with a# on
it, subtract it from|Fi| and divide it by|Fi|. Since there are usually
numerous found patterns, the spuriousness of a set of found pat-
terns is equivalent to the number of spurious items over total items
found.

spuriousness(F ) =

P

i=1...|F | (|Fi| − maxj=1...|B|fbij)
P

i=1...|F | |Fi|

(2)

F/B B1 . . . Bj . . . Bm

F1 fb11
∗# . . . fb1j

∗ . . . fb1m

. . . . . . . . . . . . . . . . . .

Fi fbi1 . . . fbij
# . . . fbim

∗

. . . . . . . . . . . . . . . . . .

Fn fbn1
∗ . . . fbnj . . . fbnm

#

Table 1: Illustration of the matrix formed by found patterns
and base (or true) patterns

3.3 Significance
Based on the two measures, recoverability and spuriousnessthat

are defined above, we define a measure called ‘significance of the
found patterns’ that combines the two just as F-measure combines
precision and recall [10].

significance(F ) =
2 ∗ (recoverability ∗ (1 − spuriousness))

(recoverability + (1 − spuriousness))
(3)

This measure balances the trade-off between useful and spurious
information in the generated patterns.



3.4 Redundancy
As mentioned above, many approximate pattern mining algo-

rithms produce huge number of patterns that are often a smallvari-
ation of one another. Hence, it is important to quantify how many
of the found patterns are actually useful. For example, an itemset
of size 10 has 45 subsets of size 8. If we recovered all of these, we
would have a recoverability of 0.8, and a spuriousness of 0, but we
would quickly be overwhelmed by the number of patterns. To mea-
sure the extent of the redundancy in the found patterns, we create
a matrixR of size|F |X|F |, whoseijth element (ith row andjth

column) is represented asffij , i.e, the number of common items
in patternsFi andFj . We then take the sum of the upper triangular
matrix R excluding the diagonal to estimate the redundancy of a
set of patterns.

redundancy(F ) =

P

i,j=1...|F | ffij −
P

i=1...|F | ffii

2
(4)

Note, we do not take the average in the computation of redun-
dancy to differentiate between the algorithms that generate unequal
number of patterns but have the same average pairwise overlap of
items. Hence, this definition of redundancy indirectly takes into
account the number of patterns generated by a mining algorithm.

3.5 Robustness
It is also important to compare approximate pattern mining al-

gorithms based on their sensitivity to the input parameters. Some
of the algorithms are more sensitive to these parameters than oth-
ers and the quality of the patterns changes drastically if the optimal
parameters are not used. Another parameter that these algorithms
are usually sensitive to is the percentage of noise in the data. Ide-
ally, an evaluation framework should evaluate the algorithm not
only on the basis of the quality of patterns (based on significance
which is defined as the combination of recoverability and spurious-
ness) but also on the basis of the size of the parameter space for
which this algorithm generates patterns of acceptable quality. This
parameter sensitivity analysis quantifies the robustness of an algo-
rithm, which is a very important criterion as optimal parameters
for a real life dataset will not be known. To do this, we explore
a reasonable three-dimensional parameter space of supportthresh-
old (minsup), row constraints (ǫr) and column constraint (ǫc) for
each algorithm and choose the topk% combinations of parameters
for which the values of the significance measure are highest.We
then take the mean and variance of these topk% significance val-
ues. While the mean denotes the performance of the algorithmin
terms of quality of the patterns, variance denotes how sensitive it
is to the selection of parameters. Ideally, one wants the mean to
be high and variance to be low. However, in real-life applications,
the unavailability of ground truth makes it inconceivable to obtain
optimal parameters. Hence, one would like to choose an algorithm
that consistently shows low variance (high stability) in top k% sig-
nificance values even at some cost of pattern quality, when tested
on synthetic datasets.

3.6 Choosing optimal parameters
As mentioned earlier, different approximate pattern mining algo-

rithms generate best results on different optimal parameters. To do
a fair comparison among them, it is very important to comparethe
results obtained by each on its own optimal parameters setting. De-
pending on the application, one may use different evaluation mea-
sures to choose optimal parameters. For a given dataset, we define
the optimal parameters for an algorithm to be the ones that give
the best value of significance. In case there is a tie among multiple
parameter combinations, any parameter combination can be used.
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Figure 2: Images of the base (no noise) synthetic datasets used
in the experiments. All datasets have 1000 transactions and50
items.

4. EXPERIMENTAL STUDY
We implemented the algorithms ‘AFI’ and ‘GETI’ and used the

publicly available version of ‘RW’. We also implemented thevari-
ations of ‘GETI’ and ‘RW’ as discussed earlier. For ‘AC-CLOSE’,
we use the patterns generated by ‘AFI’ and identify the ones that
also have a core (completely dense) block of at leastα ∗ minsup

support. Though we also implemented and tested the algorithm
‘RS’, we exclude its results because performance is generally worse
than ‘RW’. We then apply our proposed evaluation framework on
both synthetic and real datasets to compare the performanceof
these approximate pattern mining algorithms. Synthetic datasets
are used because it is easier to evaluate the merits/demerits of dif-
ferent algorithms when the ground truth is available. We also used
zoo dataset [1] as an example of a real dataset since a number
of previously published studies have also used zoo dataset [5, 3].
Moreover to avoid the problem of huge number of patterns, we only
compare the maximal patterns generated by different algorithms.

4.1 Synthetic Datasets
Various synthetic datasets were generated keeping in mind dif-

ferent characteristics of a real-life dataset. These characteristics in-
clude: 1)Noise: Almost all real-life datasets are noisy and finding
true patterns but not just the confounding groups of noisy attributes
is a non-trivial task; 2)Types of Patterns: There are variety of pat-
terns that a real-life data set may have depending on the application
domain. For example, patterns may be overlapping (either initems
or in transactions or both) or non-overlapping, of different sizes (in
terms of number of items or in terms of transactions).

We generated8 synthetic datasets (shown in figure 2) based on
the above data characteristics. All the generated datasetshave50
items and1000 transactions. Note that the datasets shown in figure
2 are only the base datasets with0% noise level but we also gen-
erated noisy versions of each of them by uniformly adding random
noise in fixed increments. Following is the brief description of each
of the synthetic datasets.

Data 1 - Single embedded pattern of10 items with a support of
200. Data 2 - Two non-overlapping embedded patterns of6 and5
items with a support of200 and150 respectively.Data 3 - Two em-
bedded patterns of6 items each (3 overlapping items) with a sup-
port of 200 and150 respectively.Data 4 - Two embedded patterns
of 6 and5 items and with a support of200 and150 respectively
(50 overlapping transactions).Data 5 - Two embedded patterns of



6 items each (3 overlapping items) with a support of200 and150
respectively (50 overlapping transactions).Data 6 - Three embed-
ded patterns of6, 5 and6 items with a support of200, 175 and150
respectively. While patterns 1 & 2, and patterns 2 & 3 overlapin
2 items and50 transactions, there is no overlap of either items or
transactions in patterns 1 & 3.Data 7 - Four embedded patterns
of 5, 4, 4 and3 items with a support of200, 150, 100 and250
respectively. Patterns 1 & 2 overlap in2 items and50 transactions,
patterns 3 & 4 overlap in1 item and50 transactions, and patterns
2 & 3 overlap in50 transactions but no items.Data 8 - Similar to
data7 except that the patterns are generated in a different way. All
the rows and columns in the data are randomly shuffled before a
new pattern is embedded. Figure 2 shows the shuffled data after 4
patterns are embedded.

Given a base (no noise) synthetic dataset, we first add random
noise by flipping its elements with a probability ofn%, which
means that(100 − n)% is the probability of any element remain-
ing constant. We vary the value ofn to obtain noisy versions of
the base synthetic dataset. We then run the algorithms on each
of the noisy dataset using a wide range of parameters like support
threshold (minsup), row (ǫr) and column (ǫc) tolerance. While we
use 0, 0.05, 0.10, 0.20, 0.25 and 0.33 as6 different values for row
(ǫr) and column (ǫc) tolerance; the range ofminsup is selected
based on the size of the implanted true patterns in the synthetic
data. Moreover, as the noise is random, we repeat the complete
process of adding noise and running the algorithms on all possible
parameter combinations5 times and report average results. To give
an illustration of the computational complexity, considerapplying
the AFI, which uses both row (ǫr) and column (ǫc) tolerance, on
a single dataset. To cover the parameter space defined by noise,
support threshold (minsup), row (ǫr) and column (ǫc) threshold,
we need to run this algorithm5 (number of runs) x5 (assuming
5 different noise levels) x5 (assuming5 different values of sup-
port parameter) x6 (# of values ofǫr) x 6 (# of values ofǫc)
= 4500 times. As the true patterns for all synthetic datasets are
known, we run all the algorithms on a wide range of parametersto
select the best combination (refered to as the optimal parameters)
for each. The performance of the algorithms is then comparedwith
each other using optimal parameters.

4.1.1 Results on synthetic datasets
Due to the space constraints, we only show results on synthetic

data6 (figure 3) and synthetic data8 (figure 4). Results on other
datasets are similar and are available on the website that contains
all the source codes and the datasets (see section 1). Also, Tables
2 and 3 shows the optimal parameters selected by each algorithm
for these datasets at different noise levels. Sometimes there are
multiple parameter values for which the generated patternsshow
the same performance measured in terms of significance. In such
cases, we show the parameter combinations corresponding tomin-
imum and maximum support within such cases. Noise level is var-
ied from0% to 16% in increments of4% for synthetic data6 and
from 0% to8% in increments of2% for synthetic data8. Again, the
maximum amount of noise level introduced in the data is governed
by the size of the smallest implanted pattern.

In both figure 3 and figure 4, we can see that the performance
of the ‘APRIORI’ algorithm (measured in terms of significance)
falls most rapidly as the random noise in the data increases.Al-
though as seen from table 2, ‘APRIORI’ uses low support threshold
(minsup = 100) for all noise levels to recover true patterns, due
to the rigid definition of support, overall recoverability and hence
significance is low.

Generally speaking, the performance of all the algorithms falls

as expected when the random noise is increased in the data. As
the noise increases, recoverability goes down, spuriousness goes
up and as a result, the significance of the patterns goes down.Al-
though, every algorithm chooses optimal parameters correspond-
ing to the best value of significance, the effect of random noise is
different on each algorithm. Broadly, these algorithms could be di-
vided into two groups: one that uses single parameterǫ and one
that uses two parametersǫr andǫc. Usually, single parameter al-
gorithms ‘RW’ and ‘GETI’ pick more spurious items than those
that uses two parameters. This is because these single parameter
algorithms only require each supporting transaction to have at least
(1 − ǫr) fraction of items. They do not impose any restriction
on the items in the column. On the other hand, algorithms ‘AFI’,
‘AC-CLOSE’ and our proposed variations ‘GETI-PP’ and ‘RW-PP’
pick fewer spurious items and hence have a better significance val-
ues. AFI uses two parametersǫr and ǫc and hence additionally
requires each item in a pattern to be supported by at least(1 − ǫc)
fraction of total supporting transactions. ‘AC-CLOSE’ further re-
quires that pattern should have a core (completely dense) block of
support at leastα ∗ minsup, whereα ∈ [0, 1]. ‘GETI-PP’ and
‘RW-PP’ uses another parameterǫc in addition to the parameterǫr

used by the algorithms ‘GETI’ and ‘RW’ to check if all the items in
each pattern have more than(1−ǫc) fraction of supporting transac-
tions. This helps in filtering some of the patterns that have spurious
items. Hence, ‘GETI-PP’ and ‘RW-PP’ finds the patterns with a
flavor similar to the ones generated by ‘AFI’.

As can be clearly seen from significance plots in figure 3 and
figure 4, generally ‘AFI’, ‘GETI-PP’, and ‘RW-PP’ have similar
performance. However, the optimal parameters used by thesealgo-
rithms are different as shown in Tables 2 (for data 6) and 3 (for data
8). For instance at a noise level of8% in synthetic data6, ‘GETI-
PP’ can find the patterns atminsup = 150, but ‘AFI’ and ‘RW-PP’
can only find them atminsup = 125. Similarly at a6% noise level
in table 3, ‘RW-PP’ finds same quality patterns at either parameters
minsup = 90, ǫr = 0.25, andǫc = 0.05 or atminsup = 100,
ǫr = 0.25, andǫc = 0.10. Therefore, by relaxingǫc from 0.05
to 0.10, ‘RW-PP’ was able to find same quality patterns at higher
support. All such cases, where multiple optimal parameter values
are possible, are shown in the optimal parameters tables.

Our results here demonstrate that differences amongst mostof
these algorithms are not very large when optimal parametersare
used. This finding is not consistent with some of the conclusions in
previous work ([5, 2]). In [5] ‘AFI’ and ‘GETI’ were comparedon a
simple synthetic dataset with one embedded pattern (similar to our
synthetic data 1) and ‘AFI’ was found to outperforms ‘GETI’ by a
huge margin both in terms of recoverability and spuriousness. Fol-
lowing are some of the possible reasons for this inconsistency: (1)
Parameter space (minsup, ǫr, ǫc) is not explored in [5] to choose
the optimal parameters for each algorithm, and (2) an exact match-
ing criterion between the found pattern and the true patternmight
have been used. In [2] ‘AFI’ and ‘AC-CLOSE’ were compared on
synthetic datasets generated using the IBM data generator.Ground
truth is defined to be the traditional dense patterns obtained using
the APRIORI algorithm in the noise-free version of the data.This
truth appears to favor the algorithm ‘AC-CLOSE’, which requires
a pattern to have a core block of support at leastα ∗ minsup.

We also compare the algorithms based on their sensitivity tothe
input parameters because in real datasets where the ground truth is
not available, optimal parameters cannot be estimated. Ideally for
a real dataset, one would like to choose an algorithm which gives
acceptable performance as measured in terms of significanceand
yet be less sensitive to the input parameters. Figures 3 and 4shows
the variance of the topk% significance values obtained on different
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Figure 3: Results on synthetic data 6 - Comparing different algorithms in terms of performance and robustness.

Algorithms Noise Levels (%)
0 4 8 12 16

APRIORI (100) (100) (100) (100) (100)
(sup) (150)
GETI (100,0) (100,0) (100,0.05) (125,0.1) (100,0.1)

(sup, ǫr) (150,0) (125,0.05)
GETI-PP (100,0,0) (100,0,0) (100,0.05,0.05) (125,0.2,0.1) (125,0.2,0.1)

(sup, ǫr, ǫc) (150,0,0) (150,0.2,0.05) (150,0.2,0.1)
RW (100,0) (100,0) (100,0.05) (175,0.2) (200,0.2)

(sup, ǫr) (200,0.25) (200,0.25) (175,0.2)
RW-PP (100,0,0) (100,0,0) (100,0.2,0.05) (125,0.2,0.1) (125,0.25,0.1)

(sup, ǫr, ǫc) (150,0,0) (125,0.2,0.05) (125,0.2,0.1)
AFI (100,0,0) (100,0,0) (100,0.2,0.1) (125,0.2,0,2) (125,0.2,0,2)

(sup, ǫr, ǫc) (150,0,0) (125,0.2,0.1) (125,0.2,0.1)
ACCLOSE (100,0,0,1) (100,0,0,1) (100,0.2,0.1,0.9) (125,0.2,0.2,0.5) (125,0.2,0.2,0.4)

(sup, ǫr, ǫc, α) (150,0,0,1)

Table 2: Optimal parameters for different algorithms on synthetic data 6.

parameter combinations for dataset 6 and 8 respectively. The mean
of the topk% significance values is also shown to indicate the over-
all performance. Note, we do not show ’APRIORI’ in the plots of
mean and variance of topk% values because ’APRIORI’ only uses
oneminsup parameter while parametersǫr and ǫc are0 by de-
sign. Also remember, variance does not indicate the performance
of the algorithm, it only indicates how consistently an algorithm
generates the patterns with similar quality on different parameter
settings. It is more meaningful to compare only those algorithms
on this measure, which show acceptable significance values.We
setk = 16.67 ( 1

6
of the total runs) in this paper. It is important to

note that ‘GETI’ and ‘RW’, which require only one parametersǫr

apart fromminsup have fewer number of runs in comparison to
algorithms ‘AFI’, ‘AC-CLOSE’, ‘GETI-PP’ and ‘RW-PP’, which

require two parametersǫr and ǫc apart fromminsup and hence
have more number of runs. Figure 3 and 4 shows the mean and
variance of top4 (out of total24) and top24 (out of total144) sig-
nificance values for these two sets of algorithms respectively. We
notice that although the difference in variance is not too high on
these datasets, ‘AC-CLOSE’ shows relatively high variance(hence
less robustness) than others. This may be because of the require-
ment of specifying fourth parameterα, which makes it difficult to
estimate the optimal parameters.

4.2 Real Dataset: Zoo Data
In the Zoo dataset [1], there are 101 instances (animals) with 15

boolean attributes (e.g. aquatic, tail, hair, eggs etc.) and a class
label (mammal, bird etc.). For approximate pattern mining,we
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Figure 4: Results on synthetic data 8 - Comparing different algorithms in terms of performance and robustness.

Algorithms Noise Levels (%)
0 2 4 6 8

APRIORI (100) (70) (80) (80) (80)
(sup) (80)
GETI (100,0) (70,0) (80,0) (100,0.05) (100,0.1)

(sup, ǫr) (100,0.05) (100,0.05)
GETI-PP (100,0,0) (70,0,0) (80,0,0) (100,0.05,0.05) (100,0.05,0.1)

(sup, ǫr, ǫc) (100,0.05,0.05) (100,0.05,0.05)
RW (100,0) (70,0) (80,0) (100,0.05) (100,0.1)

(sup, ǫr) (100,0.05) (100,0.1)
RW-PP (100,0,0) (70,0,0) (80,0,0) (90,0.25,0.05) (100,0.25,0.1)

(sup, ǫr, ǫc) (100,0.25,0.05) (100,0.25,0.1) (100,0.25,0.1)
AFI (100,0,0) (100,0.25,0.1) (80,0,0) (100,0.25,0,2) (100,0.25,0,2)

(sup, ǫr, ǫc)
ACCLOSE (100,0,0,1) (100,0.25,0.1,0.8) (80,0,0,1) (100,0.25,0.2,0.7) (100,0.25,0.2,0.6)

(sup, ǫr , ǫc, α)

Table 3: Optimal parameters for different algorithms on synthetic data 8.

consider transactions to be animals and items to be different fea-
tures that characterizes them. Finding frequent itemsets in this data
provides the ability to predict the class of an animal. In general,
approximate itemsets are more suited for this problem because not
all instances of the same class have all the common features.For
example, though most mammals produce milk, are covered in hair,
and are toothed, platypus lack teeth and dolphin lack hair.

4.2.1 Results on real dataset
We only focused on three classes (mammals, birds and sea-creatures)

as they have more than 10 instances each. As we saw from the
results on synthetic datasets, ‘GETI-PP’ and ‘RW-PP’ usually out-
performs ‘GETI’ and ‘RW’ respectively, we only show the results
of ‘AFI’, ‘GETI-PP’ and ‘RW-PP’ (see table 4). Our results indi-

cate that all the algorithms discussed in this paper (exceptof course
‘APRIORI’) can find the itemsets that defines the two classes,mam-
mals and birds, almost perfectly. An itemset of size-7 is supported
by 40

41
instances of mammals, and interestingly no other instance

(animal) from any other class supports it. Similarly, an itemset that
is only supported by the instances of the bird’s class can be found.
For example, ‘GETI’ finds an itemset of size-6 at minsup = 18
andǫr = 0.09, which is supported by all (and only) the instances
from the bird’s class. The inconsistency of these results with those
in [5, 3] is due to the difference in selection of optimal parameters.

The instances of the third class sea-creatures share3 common
features but the same3 features are also shared by some instances
from mammals and birds class. Hence, an itemset comprising of



Algorithms Mammals Birds
GETI-PP (40, 0.07, 0.15) (20, 0.1, 0.1)
RW-PP (40, 0.15, 0.15) (20, 0.1, 0.18)

AFI (40, 0.2, 0.15) (20, 0.2, 0.18)

Table 4: Parameters (sup, ǫr, ǫc) for different algorithms on
zoo data

these3 features alone cannot be used to predict the instances of
the class sea-creatures. Truly speaking, sea-creatures distinguish
themselves from other classes because they lack some features that
instances from other classes have. Association pattern mining in
general does not find patterns to capture such information. This
requires generalizing the definition of patterns to not onlyinclude
patterns like(A andB andC) but also like((A or B) and(notC))
but this generalization is beyond the scope of this paper.

4.3 Efficiency and Scalability

4.3.1 Run-Time
In this section, we compare the efficiency of different algorithms

for varying amount of noise in the dataset. Considering the fact that
different parameters will result in different run-time foreach algo-
rithm, we run the algorithms on all the different parameter combi-
nations and use the total run-time to compare them. All the algo-
rithms are run on a linux machine with 8 Intel(R) Xeon(R) CPUs
(E5310 @ 1.60GHz) (with 10 processes). Because ‘GETI-PP’ and
‘RW-PP’ are the variations of ‘GETI’ and ‘RW’ respectively,we
only report results on ‘GETI-PP’ and ‘RW-PP’. Also, the run-time
of ‘AC-CLOSE’ algorithm is not included. In table 5, we report the
run-times (in seconds) of the algorithms ‘GETI-PP’, ‘RW-PP’ and
‘AFI’ on synthetic data 8 with noise levels varied from0% to 14%
in increments of2%. Note, this is the total time taken by the algo-
rithm for 144 paramater combinations (4 differentminsup values
and6 different ǫr and ǫc values). It is interesting to see the dif-
ferences among the algorithms in terms of the increase in run-time
as the noise increases. Though, ‘AFI’ is computationally more ef-
ficient than ‘GETI-PP’ when noise in the dataset is low, it is very
expensive when noise in the dataset is high. However, it is impor-
tant to note that this is also due to high value of row and column
error threshold. It is also interesting that run-time of ‘RW-PP’ only
increase marginally when the noise is increased from0% to 12%
after which it also shows rapid increase.

Algorithms Noise Level (%)
0 2 4 6 8 10 12 14 16 18 20

AFI 11 11 12 11 12 21 1453 - - - -
GETI-PP 20 26 87 135 292 296 406 411 420 429 427
RW-PP 11 11 11 12 14 16 29 81 267 700 -

Table 5: Comparison of run-times of different algorithms for
varying amount of random noise.

4.4 Effect of higher random noise
In the experiments shown so far, random noise added to the syn-

thetic data was limited by the size (number of transaction) of the
smallest base (or true) pattern. This was done (1) to make sure
that the truth remains meaningful and (2) to make the parameter
space search feasible for mining algorithm AFI, which is compu-
tationally expensive when the random noise in the data is high.
However, in some real-life applications, small but true patterns are
hidden in even larger amounts of random noise. In such cases,it
is still desired that algorithms could recover as many significant
and useful patterns from the dataset as possible. Hence, thetrade

off between recoverability and spuriousness becomes even more
challenging. However, as the computational efficiency of the algo-
rithms decreases as the noise increases, we designed the following
two schemes to make the comparison among algorithms feasible:
• Scheme 1: For algorithms that could finish in timeδ (δ = 1 hour
in our experiments), we search the whole parameter space.
• Scheme 2: For algorithms that could not finish certain parameter
combinations in timeδ, we search the whole parameter space in
the order of complexity. Also, the row and the column thresholds
were set equal. ‘Stricter’ parameter combinations (high support
threshold, small error tolerance) take less time to finish and hence
will be tested before the ‘less strict’ ones that have small support
threshold and high error tolerance. Any combination of parameters,
support threshold and error tolerance, for which the algorithm does
not finish in timeδ, is not considered while selecting the optimal
parameters.

We compare the performance of different algorithms under more
noise only on synthetic data8 since it appears to be closest to a
real dataset. In addition to the original noise levels of 0%,2%, 4%,
6%, and 8% considered in the previous experiment, noise levels
of 10%, 12%, and 14% were also tried. As the algorithm ‘AFI’
could not finish certain parameter combinations at noise level of
14% within time δ, we use the second scheme above to search the
parameter space. Although other algorithms also took longer, they
were able to finish all the runs in timeδ. Figure 5 shows the results
on synthetic data8 including more noise levels 10%, 12%, and
14%. It is clear the performance of all the algorithms suffers due
to more random noise in the data. However, performance of ‘RW’
seems to suffer more than the others as it is picking more spurious
items. Also as ‘AFI’ could not finish certain runs at noise level 14%
in time δ and hence had to choose the optimal parameters from a
smaller parameter space, its performance falls at noise level 14%.
Moreover, as we derive ‘AC-CLOSE’ patterns from the ‘AFI’ pat-
terns using the core block constraint, performance of ‘AC-CLOSE’
falls as well. A more efficient implementation of ‘AC-CLOSE’
may not have this problem. Interestingly, in this case ‘GETI’ and
‘GETI-PP’ have better performance than ‘RW-PP’ but as we see
from the variance of the topk% (wherek = 16.67 ( 1

6
of the total

runs)) significance values (figure 5), ‘GETI’ and ‘GETI-PP’ seems
to be less robust as the noise in the data increases.

5. CONCLUSIONS
In this paper, we have proposed an evaluation framework and

showed its applicability to compare different approximatepattern
mining algorithms on both synthetic and real datasets. Following
are the general conclusions of our evaluation study:
• Our results suggest that enforcing the column error tolerance ǫc

(as introduced in AFI algorithm [5]) over the concepts of strong
ETI or recursive weak ETI, makes them much more effective in
terms of finding the true patterns with less spurious information.
• All the existing (‘AFI’ and ‘AC-CLOSE’) as well as our proposed
variations (‘GETI-PP’ and ‘RW-PP’) of the algorithms, which use
the column error toleranceǫc perform similarly when the optimal
parameters are selected. This is because adding an additional con-
straint helps filter out patterns with spurious items.
• The computational efficiency of the variations ‘GETI-PP’ and
‘RW-PP’ seems to be much better than ‘AFI’ specially at higher
noise levels. Moreover, their performance in terms of the quality of
the patterns is also comparable to those generated by ‘AFI’.

These conclusions are in contrast to some of the previously pub-
lished studies ([6, 5, 2]). [6, 5] compared only ‘GETI’ and ‘AFI’
and suggested ‘AFI’ significantly outperforms ‘GETI’. We showed
that although this is true, the difference is not that significant. More-
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Figure 5: Results on Synthetic Data 8 with more random noise levels10%, 12%, 14%

over ‘GETI-PP’, a simple variation of ‘GETI’ we proposed per-
forms comparable to ‘AFI’. [2] compared only ‘AC-CLOSE’ and
‘AFI’ and suggested ‘AC-CLOSE’ performs better than ‘AFI’.How-
ever, we observed no significant differences in ‘AFI’ and ‘AC-CLOSE’.
We believe these differences are partly due to the fact that previous
studies did not select the optimal parameters for each algorithm and
partly because of the choice of the datasets.

This comparative study, though far more comprehensive than
other previous studies, has several limitations. Most of the patterns
considered in this paper are simple embedded patterns in thesyn-
thetic datasets and hence may not reflect various aspects of complex
real datasets. Even the real zoo dataset is not very complex in terms
of its size and availability of ground truth. Though, it would be
better to apply the evaluation framework on a complex real dataset,
lack of ground truth knowledge makes this much harder.

There are still many interesting problems that need to be studied.
In the evaluation framework, it would be interesting to incorporate
redundancy and other measures in the process of optimal parameter
selection. On the algorithm side, extending approximate pattern
mining algorithms to work with categorical and continuous valued
data could prove to be very beneficial to many application domains.
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