Quantitative Evaluation of Approximate Frequent Pattern
Mining Algorithms

Rohit Gupta
Dept of Comp Sc and Engg
Univ of Minnesota, Twin Cities
Minneapolis, MN USA
rohit@cs.umn.edu

Michael Steinbach
Dept of Comp Sc and Engg
Univ of Minnesota, Twin Cities
Minneapolis, MN USA

steinbac@cs.umn.edu

ABSTRACT

Traditional association mining algorithms use a strictrdgéin of
support that requires every item in a frequent itemset taoot
each supporting transaction. In real-life datasets, hstd the
recovery of frequent itemset patterns as they are fragrdesite
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to random noise and other errors in the data. Hence, a numberAssociation analysis, approximate frequent itemsetr ¢oler-

of methods have been proposed recently to discover appat&im
frequent itemsets in the presence of noise. These algitiza
a relaxed definition of support and additional parametarsh @s
row and column error thresholds to allow some degree of ferro
in the discovered patterns. Though these algorithms haga be
shown to be successful in finding the approximate frequemnt-it
sets, a systematic and quantitative approach to evaluate kias
been lacking. In this paper, we propose a comprehensivei@val
tion framework to compare different approximate frequeattgrn
mining algorithms. The key idea is to select the optimal peaters
for each algorithm on a given dataset and use the itemsetsaged
with these optimal parameters in order to compare diffeag-
rithms. We also propose simple variations of some of thetiegis
algorithms by introducing an additional post-processiegp sSub-
sequently, we have applied our proposed evaluation frametoo
a wide variety of synthetic datasets with varying amountsa$e
and a real dataset to compare existing and our proposedioaga
of the approximate pattern mining algorithms. Source coudkthe
datasets used in this study are made publicly available.

Categories and Subject Descriptors

H.2.8 [Database Managemerjt Database Applications-Bata Min-
ing; D.2.8 [Software Engineering: Metrics—performance mea-
sures; 1.5 [Pattern Recognitior]: Miscellaneous
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ance, quantitative evaluation

1. INTRODUCTION

Traditional association mining algorithms use a strictrdgéin
of support that requires every item in a frequent itemsetcup
in each supporting transaction. In real-life datasets, limits the
recovery of frequent itemset patterns as they are fragrdehte to
random noise and other errors in the data.

Motivated by such considerations, various methods [11, 8, 8
5, 2] have been proposed recently to discover approximatgiént
itemsets (often called error-tolerant itemsets (ETIs))abgwing
itemsets in which a specified fraction of the items can beingss
Please see figure 1 for a conceptual overview. The most bpsic a
proach is to require only that a specified fraction of the gema
collection of items and transactions be present. Howevah s
‘weak’ ETI [11] provides no guarantees on the distributidrite
items within this ‘block, i.e., some rows or columns coukl ¢com-
pletely empty. To address this issue, a ‘strong’ ETI was éeffin
[11], which required that each row must have at most a spdcifie
fraction of items missing. The support of strong ETls is dimp
the number of transactions that support the pattern, asitraidi-
tional case, but support does not have the anti-monotongeso
i.e., support can increase as the number of items incre@kas, a
heuristic algorithm for finding strong ETIs was developed.

Indeed, the lack of an anti-monotone support measure is bne o
the factors that has made the construction of algorithm8riding
approximate itemsets very challenging. One solution thad$ to
an anti-monotone support measure is to allow only a fixed mumb
of missing items in each row [7]. This approach does not eefor
any constraint on the number of items missing in a column,isnd
unappealing in that bigger itemsets should be allowed mass-m
ing items than the smaller ones. Another potential soluisoan
approach that uses ‘dense’ itemsets [8]. The support of proap
imate itemset is defined in terms of the minimum support ofyeve
subset and is anti-monotone, but one may argue whether timé de
tion of an approximate pattern used by this approach is esdipg



as some of the other definitions since different subsetenfitmay
be supported by different transactions.

Both strong and weak ETI patterns can have empty columns.

To handle this situation, approximate frequent itemsefs| 45]
were proposed. AFls enforce constraints on the number of-mis

ing items in both rows and columns. One of the advantages of

AFls over weak/strong ETls is that there is a limited versiban
anti-monotone property that helps prune the search spaoe- H
ever, this algorithm cannot guarantee that no AFls are ooked
since a heuristic approach is used to verify the column caimst
Although AFIs might seem like the most natural and complete d
inition of an approximate itemset pattern, one might ardpa¢ it is
easier and perhaps more meaningful to find approximate @&sms
if at least some transactions contain all the items comygisin
approximate itemset. This formed the motivation for AC-CG3E)
which finds AFls based on the notion of core itemsets [2].

Weak ETI

)

Figure 1: A conceptual hierarchy of approximate pat-
terns/algorithms

will lead to a traditional frequent itemset if their erraigrance is

Although these approaches have shown to be successful in find Set to0. However, first we define a set of common terminology.

ing the approximate frequent itemsets, a systematic andtitara
tive approach to evaluate the patterns they generatelikasking.
Indeed, most of the papers on approximate itemsets havéprbv
only limited comparisons with other work: The paper thatont
duced AFls [5] only presented a comparison to strong ETI$, [11
while AC-CLOSE [2] only compared against AFls [6, 5].
Contributions of this paper:
e We perform a comprehensive evaluation of algorithms for
finding approximate itemsets. Building on the initial work

by others, we propose an evaluation framework to compare

various frequent pattern mining algorithms. We apply our
evaluation framework to compare different approximate pat
tern mining algorithms based on their robustness to thetinpu
parametersrinsup, €., ande.) and on the quality of the

patterns (measured in terms of significance and redundancy) condition holds:

e Our work highlights the importance of choosing optimal pa-
rameters. In general, approximate pattern mining algmsth

Assume, we have a binary transaction database consistiageif
I={i1,...,im } Of items, and a set T4, ..., ¢, } of transactions,
where eacht; has a subset of items from It is useful to think of
such a database aswaby-m binary matrix D, with each column
corresponding to an item, and each row corresponding tona-tra
action. ThusD; ., = 1if i, € t;, and0 otherwise. An itemset (or
pattern)!’ is said to be a frequent itemset if its support (the number
of transactions it appears i{,7” : I’ C T"}|), is more than some
user-specified threshold denotedrynsup.

2.1 Error Tolerant Itemsets (ETIs) - GETI

The concept of weak and strong ETI was defined in [11]. An
itemset]’ at supportminsup is said to be a weak ETI with tol-
erancee if 37" € T such thaiT’| > minsup and the following

i1’ 1 Dy ;
Zz&lu/z‘*# >1—¢

It is difficult to find all weak ETls, since we effectively hate
search the entire pattern space without any pruning. Algocam

use various parameters and given that each parameter can b&ave both rows and columns included that consist entirezeuass,
set to many different values, the performance of various al- Since there is no constraint as to where the Q’s can occuimnvitie

gorithms can be greatly affected. Thus, it is more reasenabl itemset. An itemsef’ at supportménsup is said to be a strong
and fair to compare each algorithm’s performance using its ET!with tolerancer if 37" € 7" such tha{T”| > minsup and the

own optimal parameters in the parameter space.

e \We propose simple variations of the existing algorithms pro
posed in [11] and [8] by adding an additional step to check if
each candidate approximate pattern also satisfies the nolum
error thresholdd.). These modified algorithms not only gen-
erate high quality patterns but also compare well with those
generated by ‘AFI’ ([5]) and ‘AC-CLOSE’ ([2]).

The source codes of all the algorithms as well as synthetlceai
data sets used in this study are available at the followinigsite:
www. ¢s. umm. edu/ ~kumar / ETI /.

Organization: The remainder of the paper is organized as fol-
lows. In Section, we briefly review the existing algorithms for
approximate frequent pattern mining and we also proposeleim
variations of some of them. Section 3 gives the details ofpoar
posed evaluation methodology, including the definition etisures
and how to select optimal parameters for each algorithm avemg
dataset. We discuss our experimental results in Sectionl £@m
clude with final remarks and future work in Section 5.

2. APPROXIMATE FREQUENT PATTERN
MINING ALGORITHMS

Below, we briefly define different generalizations of freque
itemsets, which can generally be viewed as a hierarchy asrsho
in Figure 1. It is important to note that each of these defingi

following condition holdsvt € T": % >1—c¢

This implies that for a given set of parameters, any strong ET
is also a weak ETI (figure 1). Also, the definition of strong ETI
helps to eliminate the possibility of adding spurious tean®ns. A

greedy approach for computing strong ETIs is also propok&l [
2.2 Recursive Weak ETls - RW

This algorithm was developed by Seppéanen and Mannila and
named (somewhat misleadingly) dense itemsets [8]. Thevidsa
to add a recursive condition to the definition of a weak ET Irithen
to overcome weak ETlIs inherent susceptibility to spuridams.
Thus an itemsef’ is a recursive weak ETI if’, as well as all sub-
sets ofI’, are weak ETIs. One key point to note here is the set of
transactions for the subset of items do not necessarily todwelthe
same. While this may seem to be a drawback, it still guararites
any set of items within the itemset are related to one anofftes
algorithm also has an advantage of apriori-like pruning mivegif
an itemset is not a recursive weak ETI, no superset of it casipo
bly be a recursive weak ETI. We denote this algorithm as 'RW' i
this paper (see figure 1 for its relationship to other aloni).

2.3 Approximate Frequent Itemsets (AFI)

The concept of an Approximate Frequent ltemset (AFI) was de-
veloped in [5], although it was earlier introduced in [9].€Tidea is
to extend the concept of strong ETI to include separate ralicah



umn constraintse(- ande. respectively). An itemset’ at support
minsup is said to be an AFI with toleraneg ande. if 37" € T
such tha7T’| > minsup and the following two conditions hold:
Viel, T Phi > 1 e andve e T/, Ziel P > 1 ¢,

From the above properties, it can be seen that AFls are a sub-
set of strong ETIs (see figure 1). One of the advantage of AFls
over weak/strong ETls is that a relaxed version of an antiotane
property holds for this pattern.

2.4 AC-CLOSE

AC-CLOSE [2] uses a core pattern constraint in addition t@ ro
(e-) and column £.) error thresholds to find frequent approximate
patterns. Specifically, this algorithm uses a parametéo con-
trol the percentage of supporting transactions that must aththe
items in an itemset. This essentially further filters outquais gen-
erated by the algorithm ‘AFI' (see figure 1). In [2], an efficie
top-down mining algorithm was also proposed to discover@pp
mate frequent patterns with core patterns as the initialsda this
paper, we apply the additional parametels a post-processing
step to ‘AFI’ patterns to obtain ‘AC-CLOSE’ patterns. Copte
ally, the patterns should be equivalent to the original AGSSE,
our implementation is not as efficient as the original ‘ACQ3E’
implementation.

2.5 Error Tolerant Itemsets (ETIs) with strong
post-processing - GETI-PP

In order to overcome the possibility that ‘GETI' can pick spu
rious items, we propose a variation of ‘GETI’ which uses adiad
tional parametere() to make sure every item in each ETI generated
by the algorithm ‘GET!I’ also satisfies the column constraint

2.6 Recursive Weak ETIs with strong post pro-
cessing - RW-PP
In order to overcome the drawback of both strong ETIs and re-
cursive weak ETls, we added a post-processing step in Higori
‘RW’ to make sure that all recursive weak ETls also meets a cer
tain column threshold (say.). Hence, patterns generated using
‘RW-PP’ lie in the intersection of ‘RW’ and strong ETI (figulg.

2.7 Recursive Strong ETls - RS

Since the recursive weak definition seems to work well inprac
tice [8], a natural step is to define a recursive strong ETlensh
each subset must also be a recursive strong ETI (figure 1).

3. EVALUATION METHODOLOGY

The evaluation approach given in [3] compares the resulityua
of different noise-tolerant models using precision analedAn-
other evaluation framework for frequent sequential pattaming
[4] considers recoverability, spuriousness, redundamzy raum-
ber of extraneous items as quantitative measures and inéden
the design of our evaluation framework. Building upon thé de
inition of recoverability and spuriousness given in [4]]dve we
describe the evaluation measures in more detail. Note, \firede
B = {b1,...,bm} to be the set of base itemsets (“true” patterns)
andF = {fi,..., f»} to be the set of found patterns.

3.1 Recoverability

This quantifies how well an approximate pattern mining algo-
rithm recovers the base patterns. In this definition, rechigty
is similar to recall. To measure the recoverability of theetpat-
terns using the found patterns, we create a matrix of|$iz& | B|,
whoseij'" element ¢{* row andj'" column) is represented as

fbij, i.e, the number of common items in found pattéfnand
base patter®;. We consider the recoverability of any base pattern
B; to be the largest percent of the itemset found by any pafiern
that is associated witl;. For illustration purposes, as shown in
table 1, for each base pattern (each column in table 1), we put
x on an entry which is maximum in that column. If there is a tie
among found patterns for the maximum value, we span mul-
tiple entries. For computing the recoverability of the bpa#ern
Bj;, we take any entry with a on it and divide it by the size aB;.
When we have more than one true pattern in the data, we need to
combine the recoverability for each pattern into one measlinis

is done by taking a weighted average (bigger patterns cooné m
than smaller patterns) over all base patterns.

> j=1.. B MaTi=1..|F| fbij
Zj:l.‘.\B\ |Bj

recoverability(B) = Q)

3.2 Spuriousness

Although recoverability gives a good idea of what fractidnh o
patterns are recovered by an algorithm, it does not give pl=im
picture. It is possible that a pattern is recovered solebahse a
found pattern contained a large number of items, not all seardy
related to the base pattern. Thus just as precision is congple
tary to recall, we need another sibling measure of recovédgab
(recall) that measures the quality of the found patterng. qurality
of a pattern can be estimated using the spuriousness meesicte
computes the number of items in the pattern that are not ssdc
with the matching base pattern (i.e., are spurious). Hepesi-
sion of a found pattern can be definedlas spuriousness. For
illustration purposes, as shown in table 1, for each fourttepa
(each row in table 1), we put# on an entry which is maximum
in that row. If there is a tie among base patterns for the masim
value, we put g on multiple entries in a row. For computing the
spuriousness of the found pattérn we take any entry with & on
it, subtract it from| 3| and divide it by| F;|. Since there are usually
numerous found patterns, the spuriousness of a set of foand p
terns is equivalent to the number of spurious items ovet itetas
found.

Zi:l...\F\ (|FZ| - ma%:lﬂwB\fbij)

spuriousness(F) =
Zi:L.\F\ |FZ|
(2
F/B Bl BJ B'm
B | fou*# fbi* foim
F; fbi1 fbi; * fbim™
Fn fbnl* fbnj fbn'm#

Table 1: lllustration of the matrix formed by found patterns
and base (or true) patterns

3.3 Significance

Based on the two measures, recoverability and spurioushass
are defined above, we define a measure called ‘significandesof t
found patterns’ that combines the two just as F-measure ic@asb
precision and recall [10].

2% (recoverability * (1 — spuriousness))
" (recoverability + (1 — spuriousness))

©)
This measure balances the trade-off between useful anibgpur
information in the generated patterns.

signi ficance(F)



3.4 Redundancy

As mentioned above, many approximate pattern mining algo-
rithms produce huge number of patterns that are often a sar&l|
ation of one another. Hence, it is important to quantify hoangn
of the found patterns are actually useful. For example, emset
of size 10 has 45 subsets of size 8. If we recovered all of fese
would have a recoverability of 0.8, and a spuriousness ofiOywie
would quickly be overwhelmed by the number of patterns. Tame
sure the extent of the redundancy in the found patterns, eaer
a matrix R of size|F| X |F|, whoseij*" element {*" row and;*"
column) is represented &;;, i.e, the number of common items
in patternsF; and ;. We then take the sum of the upper triangular
matrix R excluding the diagonal to estimate the redundancy of a
set of patterns.

Zi,j:l.“\F\ Il — Zi:L.\F\ [ i

> @

Note, we do not take the average in the computation of redun-
dancy to differentiate between the algorithms that gepamaéqual
number of patterns but have the same average pairwise pwarla
items. Hence, this definition of redundancy indirectly wlketo
account the number of patterns generated by a mining ahgorit

redundancy(F) =

3.5 Robustness

It is also important to compare approximate pattern minikg a
gorithms based on their sensitivity to the input paramet&ame
of the algorithms are more sensitive to these parametensatte
ers and the quality of the patterns changes drasticallgibgtimal
parameters are not used. Another parameter that thesétlabger
are usually sensitive to is the percentage of noise in thee dde-
ally, an evaluation framework should evaluate the algoritot
only on the basis of the quality of patterns (based on sigrifie
which is defined as the combination of recoverability andisps-
ness) but also on the basis of the size of the parameter speace f
which this algorithm generates patterns of acceptablatgudhis
parameter sensitivity analysis quantifies the robustneas algo-
rithm, which is a very important criterion as optimal paraens
for a real life dataset will not be known. To do this, we explor
a reasonable three-dimensional parameter space of suppesh-
old (minsup), row constraintsd;) and column constraink({) for
each algorithm and choose the tidh combinations of parameters
for which the values of the significance measure are highé&/st.
then take the mean and variance of thesekt#@psignificance val-
ues. While the mean denotes the performance of the algoiithm
terms of quality of the patterns, variance denotes how tessi
is to the selection of parameters. Ideally, one wants thennea
be high and variance to be low. However, in real-life appiass,
the unavailability of ground truth makes it inconceivaldeobtain
optimal parameters. Hence, one would like to choose anittigor
that consistently shows low variance (high stability) ip &% sig-
nificance values even at some cost of pattern quality, whetede
on synthetic datasets.

3.6 Choosing optimal parameters

As mentioned earlier, different approximate pattern ngratgo-
rithms generate best results on different optimal pararsef® do
a fair comparison among them, it is very important to complaee
results obtained by each on its own optimal parameterngeftiie-
pending on the application, one may use different evalnatiea-
sures to choose optimal parameters. For a given datasegfine d
the optimal parameters for an algorithm to be the ones that gi
the best value of significance. In case there is a tie amontpieul
parameter combinations, any parameter combination casdzk u
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Figure 2: Images of the base (no noise) synthetic datasetsads
in the experiments. All datasets have 1000 transactions arsD
items.

4. EXPERIMENTAL STUDY

We implemented the algorithms ‘AFI' and ‘GETI’ and used the
publicly available version of ‘RW’. We also implemented tyeei-
ations of ‘GETI’ and ‘RW’ as discussed earlier. For ‘AC-CLES
we use the patterns generated by ‘AFI" and identify the ohas t
also have a core (completely dense) block of at leastminsup
support. Though we also implemented and tested the algorith
‘RS’, we exclude its results because performance is gdgevatse
than ‘RW’. We then apply our proposed evaluation framewark o
both synthetic and real datasets to compare the performaince
these approximate pattern mining algorithms. Synthettas#ds
are used because it is easier to evaluate the merits/dero&dif-
ferent algorithms when the ground truth is available. We alsed
zoo dataset [1] as an example of a real dataset since a number
of previously published studies have also used zoo dat&s&f.[
Moreover to avoid the problem of huge number of patterns,nig o
compare the maximal patterns generated by different algosi.

4.1 Synthetic Datasets

Various synthetic datasets were generated keeping in nifnd d
ferent characteristics of a real-life dataset. These clerniatics in-
clude: 1)Noise: Almost all real-life datasets are noisy and finding
true patterns but not just the confounding groups of noisjbates
is a non-trivial task; 2)lypes of Patterns. There are variety of pat-
terns that a real-life data set may have depending on thé&atiph
domain. For example, patterns may be overlapping (eithieeins
or in transactions or both) or non-overlapping, of diffdreimes (in
terms of number of items or in terms of transactions).

We generate@ synthetic datasets (shown in figure 2) based on
the above data characteristics. All the generated dathaeess0
items andl000 transactions. Note that the datasets shown in figure
2 are only the base datasets with noise level but we also gen-
erated noisy versions of each of them by uniformly addingloam
noise in fixed increments. Following is the brief descriptaf each
of the synthetic datasets.

Data 1 - Single embedded pattern b items with a support of
200. Data 2 - Two non-overlapping embedded pattern$aind5
items with a support d200 and150 respectivelyData 3 - Two em-
bedded patterns df items eachd overlapping items) with a sup-
port of 200 and 150 respectivelyData 4 - Two embedded patterns
of 6 and5 items and with a support af00 and 150 respectively
(50 overlapping transactionspata 5 - Two embedded patterns of



6 items eachd overlapping items) with a support @H0 and 150
respectively §0 overlapping transactionspata 6 - Three embed-
ded patterns o, 5 and6 items with a support a£00, 175 and150
respectively. While patterns 1 & 2, and patterns 2 & 3 oveitap

2 items ands0 transactions, there is no overlap of either items or
transactions in patterns 1 & Pata 7 - Four embedded patterns
of 5, 4, 4 and 3 items with a support 0200, 150, 100 and 250
respectively. Patterns 1 & 2 overlap2ritems and>0 transactions,
patterns 3 & 4 overlap in item and50 transactions, and patterns
2 & 3 overlap in50 transactions but no item®ata 8 - Similar to
data7 except that the patterns are generated in a different way. Al

as expected when the random noise is increased in the data. As
the noise increases, recoverability goes down, spuri@ssgees
up and as a result, the significance of the patterns goes dalwvn.
though, every algorithm chooses optimal parameters quores
ing to the best value of significance, the effect of randons@dé
different on each algorithm. Broadly, these algorithmsldde di-
vided into two groups: one that uses single parametend one
that uses two parameters ande.. Usually, single parameter al-
gorithms ‘RW’ and ‘GETI’ pick more spurious items than those
that uses two parameters. This is because these single gtaram
algorithms only require each supporting transaction telseast

the rows and columns in the data are randomly shuffled before a (1 — ¢,) fraction of items. They do not impose any restriction

new pattern is embedded. Figure 2 shows the shuffled datadafte
patterns are embedded.

on the items in the column. On the other hand, algorithms"AFI
‘AC-CLOSE’ and our proposed variations ‘GETI-PP’ and ‘RW-P

Given a base (no noise) synthetic dataset, we first add randompick fewer spurious items and hence have a better signiféceale

noise by flipping its elements with a probability e, which
means thaf100 — n)% is the probability of any element remain-
ing constant. We vary the value afto obtain noisy versions of
the base synthetic dataset. We then run the algorithms dm eac
of the noisy dataset using a wide range of parameters likeostip
threshold (ninsup), row (e,) and column{.) tolerance. While we
use 0, 0.05, 0.10, 0.20, 0.25 and 0.33% afifferent values for row
(e-) and column €.) tolerance; the range ohinsup is selected
based on the size of the implanted true patterns in the symthe
data. Moreover, as the noise is random, we repeat the camplet
process of adding noise and running the algorithms on a8liptes
parameter combinatioristimes and report average results. To give
an illustration of the computational complexity, considgplying

the AFI, which uses both rowef) and column ¢.) tolerance, on

a single dataset. To cover the parameter space defined kg, nois
support thresholdrfinsup), row (e,) and column ¢.) threshold,

we need to run this algorithri (number of runs) 5 (assuming

5 different noise levels) % (assumings different values of sup-
port parameter) % (# of values ofe,) X 6 (# of values ofe.)

= 4500 times. As the true patterns for all synthetic datasets are
known, we run all the algorithms on a wide range of parameters
select the best combination (refered to as the optimal petens)

for each. The performance of the algorithms is then compaitd
each other using optimal parameters.

4.1.1 Results on synthetic datasets

Due to the space constraints, we only show results on syathet
data6 (figure 3) and synthetic data(figure 4). Results on other
datasets are similar and are available on the website tinéhios
all the source codes and the datasets (see section 1). AlBtesT
2 and 3 shows the optimal parameters selected by each algorit
for these datasets at different noise levels. Sometimes te
multiple parameter values for which the generated pattehiasy
the same performance measured in terms of significance.cn su
cases, we show the parameter combinations correspondinimto
imum and maximum support within such cases. Noise levelrs va
ied from0% to 16% in increments oft% for synthetic dat# and
from 0% to 8% in increments o2% for synthetic dat&. Again, the
maximum amount of noise level introduced in the data is gmeer
by the size of the smallest implanted pattern.

In both figure 3 and figure 4, we can see that the performance
of the ‘APRIORI’ algorithm (measured in terms of significahc
falls most rapidly as the random noise in the data increasés.
though as seen from table 2, ‘APRIORI’ uses low support tiwks
(minsup = 100) for all noise levels to recover true patterns, due
to the rigid definition of support, overall recoverabilitpdahence
significance is low.

Generally speaking, the performance of all the algorithatis f

ues. AFI uses two parameters ande. and hence additionally
requires each item in a pattern to be supported by at (@aste.)
fraction of total supporting transactions. ‘AC-CLOSE’ thuer re-
quires that pattern should have a core (completely deneek lif
support at leastv * minsup, wherea € [0,1]. ‘GETI-PP’ and
‘RW-PP’ uses another parameterin addition to the parameter
used by the algorithms ‘GETI’ and ‘RW’ to check if all the iterim
each pattern have more théh—e¢..) fraction of supporting transac-
tions. This helps in filtering some of the patterns that haueisus
items. Hence, ‘GETI-PP’ and ‘RW-PP’ finds the patterns with a
flavor similar to the ones generated by ‘AFI'.

As can be clearly seen from significance plots in figure 3 and
figure 4, generally ‘AFI’, ‘GETI-PP’, and ‘RW-PP’ have sirail
performance. However, the optimal parameters used by Higee
rithms are different as shown in Tables 2 (for data 6) and 3dd@ba
8). For instance at a noise level 8% in synthetic data®, ‘GETI-
PP’ can find the patterns atinsup = 150, but ‘AFI’ and ‘RW-PP’
can only find them atinsup = 125. Similarly at a6% noise level
in table 3, ‘RW-PP’ finds same quality patterns at either patars
minsup = 90, ¢, = 0.25, ande. = 0.05 or atminsup = 100,

e = 0.25, ande. = 0.10. Therefore, by relaxing. from 0.05

to 0.10, ‘RW-PP’ was able to find same quality patterns at higher
support. All such cases, where multiple optimal paramedéwes
are possible, are shown in the optimal parameters tables.

Our results here demonstrate that differences amongst ahost
these algorithms are not very large when optimal parameirers
used. This finding is not consistent with some of the conohssin
previous work ([5, 2]). In[5] ‘AFI’ and ‘GETI’ were comparesh a
simple synthetic dataset with one embedded pattern (sitoilaur
synthetic data 1) and ‘AFI’ was found to outperforms ‘GETY &
huge margin both in terms of recoverability and spuriousnesl-
lowing are some of the possible reasons for this incongigtei)
Parameter spaceninsup, €r, €.) is not explored in [5] to choose
the optimal parameters for each algorithm, and (2) an exattim
ing criterion between the found pattern and the true patragit
have been used. In [2] ‘AFI’ and ‘AC-CLOSE’ were compared on
synthetic datasets generated using the IBM data gene@tound
truth is defined to be the traditional dense patterns obdairsing
the APRIORI algorithm in the noise-free version of the dathis
truth appears to favor the algorithm ‘AC-CLOSE’, which regs
a pattern to have a core block of support at leagtminsup.

We also compare the algorithms based on their sensitivitiyeo
input parameters because in real datasets where the gnaouhdist
not available, optimal parameters cannot be estimateallydier
a real dataset, one would like to choose an algorithm whicbsgi
acceptable performance as measured in terms of signifiGamte
yet be less sensitive to the input parameters. Figures 3 ahdwis
the variance of the top% significance values obtained on different
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Figure 3: Results on synthetic data 6 - Comparing different &gorithms in terms of performance and robustness.

Algorithms Noise Levels (%)
0 4 8 12 16
APRIORI (100) (100) (100) (100) (100)
(sup) (150)
GETI (100,0) (100,0) (100,0.05) (125,0.1) (100,0.1)
(sup, €r) (150,0) (125,0.05)
GETI-PP (100,0,0) (100,0,0) (100,0.05,0.05) (125,0.2,0.1) (125,0.2,0.1)
(sup, €,, €.) (150,0,0) | (150,0.2,0.05)] (150,0.2,0.1)
RW (100,0) (100,0) (100,0.05) (175,0.2) (200,0.2)
(sup, €,) (200,0.25) (200,0.25) (175,0.2)
RW-PP (100,0,0) (100,0,0) (100,0.2,0.05) (125,0.2,0.1) (125,0.25,0.1)
(sup, €,, €.) (150,0,0) | (125,0.2,0.05)] (125,0.2,0.1)
AFI (100,0,0) (100,0,0) (100,0.2,0.1) (125,0.2,0,2) (125,0.2,0,2)
(sup, €r, €c) (150,0,0) | (125,0.2,0.1) (125,0.2,0.1)
ACCLOSE (100,0,0,1)( (100,0,0,1) | (100,0.2,0.1,0.9)] (125,0.2,0.2,0.5)| (125,0.2,0.2,0.4)
(sup, €, €., a) | (150,0,0,1)

Table 2: Optimal parameters for different algorithms on synthetic data 6.

parameter combinations for dataset 6 and 8 respectivelynidan require two parameters. ande. apart fromminsup and hence

of the topk% significance values is also shown to indicate the over- have more number of runs. Figure 3 and 4 shows the mean and
all performance. Note, we do not show 'APRIORI’ in the plofs o  variance of topt (out of total24) and top24 (out of total144) sig-
mean and variance of tdgt values because 'APRIORI’ only uses  nificance values for these two sets of algorithms respdygtivse

one minsup parameter while parametets ande. are0 by de- notice that although the difference in variance is not taghton
sign. Also remember, variance does not indicate the pegooa these datasets, ‘AC-CLOSE' shows relatively high variafihesce
of the algorithm, it only indicates how consistently an aition less robustness) than others. This may be because of thieerequ
generates the patterns with similar quality on differemapzeter ment of specifying fourth parametes, which makes it difficult to
settings. It is more meaningful to compare only those alors estimate the optimal parameters.

on this measure, which show acceptable significance vahés.
setk = 16.67 (3 of the total runs) in this paper. Itis importantto 4.2 Real Dataset: Zoo Data
note that ‘GETI" and ‘RW’, which require only one parameters In the Zoo dataset [1], there are 101 instances (animalf) 1t

apart. fromminsup have fewer number of runs in comparispn t0  poolean attributes (e.g. aquatic, tail, hair, eggs etcd @ulass
algorithms "AFI’, ‘AC-CLOSE', ‘GETI-PP" and ‘RW-PP’, whib label (mammal, bird etc.). For approximate pattern miniwg,
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Figure 4: Results on synthetic data 8 - Comparing different &gorithms in terms of performance and robustness.

Algorithms Noise Levels (%)
0 2 4 6 8
APRIORI (100) (70) (80) (80) (80)
(sup) (80)
GETI (100,0) (70,0) (80,0) (100,0.05) (100,0.1)
(sup, €,) (100,0.05) (100,0.05)
GETI-PP (100,0,0) (70,0,0) (80,0,0) (100,0.05,0.05) (100,0.05,0.1)
(sup, €, €.) (100,0.05,0.05) | (100,0.05,0.05)
RW (100,0) (70,0) (80,0) (100,0.05) (100,0.1)
(sup, €,) (100,0.05) (100,0.1)
RW-PP (100,0,0) (70,0,0) (80,0,0) (90,0.25,0.05) (100,0.25,0.1)
(sup, €,, €.) (100,0.25,0.05) | (100,0.25,0.1) (100,0.25,0.1)
AFI (100,0,0) (100,0.25,0.1) (80,0,0) (100,0.25,0,2) (100,0.25,0,2)
(sup, €, €c)
ACCLOSE (100,0,0,1) [ (100,0.25,0.1,0.8 (80,0,0,1) (100,0.25,0.2,0.7)[ (100,0.25,0.2,0.6
(sup, €r, €c, @)

Table 3: Optimal parameters for different algorithms on synthetic data 8.

consider transactions to be animals and items to be difféezn cate that all the algorithms discussed in this paper (exafeggiurse
tures that characterizes them. Finding frequent itemeetss data ‘APRIORI’) can find the itemsets that defines the two classesn-
provides the ability to predict the class of an animal. Ineyah mals and birds, almost perfectly. An itemset of sizis-supported
approximate itemsets are more suited for this problem tsecaat by % instances of mammals, and interestingly no other instance

all instances of the same class have all the common feathes. (animal) from any other class supports it. Similarly, amiset that
example, though most mammals produce milk, are coverediin ha is only supported by the instances of the bird’s class cambed.

and are toothed, platypus lack teeth and dolphin lack hair. For example, ‘GETI finds an itemset of sifeat minsup = 18
ande, = 0.09, which is supported by all (and only) the instances
4.2.1 Resultson real dataset from the bird’s class. The inconsistency of these resulth thiose

We only focused on three classes (mammals, birds and seawes) in [5, 3] is due to the difference in selection of optimal pagers.
as they have more than 10 instances each. As we saw from the ) )
results on synthetic datasets, ‘GETI-PP’ and ‘RW-PP’ UgLalt- The instances of the third class sea-creatures shammmon
performs ‘GETI" and ‘RW’ respectively, we only show the réisu features but the sangefeatures are also shared by some instances

of ‘AFI’, ‘GETI-PP’ and ‘RW-PP’ (see table 4). Our resultsdin from mammals and birds class. Hence, an itemset compriging o



Algorithms Mammals Birds
GETI-PP | (40, 0.07,0.15)| (20, 0.1, 0.1)
RW-PP | (40, 0.15, 0.15) (20, 0.1, 0.18)
AFI (40,0.2,0.15) | (20,0.2,0.18)

Table 4: Parameters Gup, ¢, ¢.) for different algorithms on
Z00 data

off between recoverability and spuriousness becomes ewws m
challenging. However, as the computational efficiency efadlgo-
rithms decreases as the noise increases, we designedItverigl
two schemes to make the comparison among algorithms feasibl
e Scheme 1: For algorithms that could finish in tith& = 1 hour

in our experiments), we search the whole parameter space.

e Scheme 2: For algorithms that could not finish certain patame
combinations in timej, we search the whole parameter space in

these3 features alone cannot be used to predict the instances ofthe order of complexity. Also, the row and the column thrégso

the class sea-creatures. Truly speaking, sea-creatistsgdish
themselves from other classes because they lack somedeaitat
instances from other classes have. Association pattermgin
general does not find patterns to capture such informatidnis T
requires generalizing the definition of patterns to not antjude
patterns likg A andB andC') but also like((A or B) and(notC'))
but this generalization is beyond the scope of this paper.

4.3 Efficiency and Scalability

43.1 Run-Time

In this section, we compare the efficiency of different aiigons
for varying amount of noise in the dataset. Consideringalethat
different parameters will result in different run-time feach algo-
rithm, we run the algorithms on all the different paramet@mbi-
nations and use the total run-time to compare them. All the-al
rithms are run on a linux machine with 8 Intel(R) Xeon(R) CPUs
(E5310 @ 1.60GHz) (with 10 processes). Because ‘GETI-P®’ an
‘RW-PP’ are the variations of ‘GETI' and ‘RW’ respectivelye
only report results on ‘GETI-PP’ and ‘RW-PP’. Also, the rtime
of ‘AC-CLOSE’ algorithm is not included. In table 5, we reptne
run-times (in seconds) of the algorithms ‘GETI-PP’, ‘RW-RRd
‘AFI’ on synthetic data 8 with noise levels varied frdific to 14%
in increments o2%. Note, this is the total time taken by the algo-
rithm for 144 paramater combinationd @lifferentminsup values
and6 differente, ande. values). It is interesting to see the dif-
ferences among the algorithms in terms of the increase ktimus
as the noise increases. Though, ‘AFI’ is computationallyeref-
ficient than ‘GETI-PP’ when noise in the dataset is low, it &w
expensive when noise in the dataset is high. However, it p®im
tant to note that this is also due to high value of row and colum
error threshold. It is also interesting that run-time of ‘FR®’ only
increase marginally when the noise is increased féétnto 12%
after which it also shows rapid increase.

Algorithms Noise Level (%)
10 T

0 2 4 6
11 11 12 11
20 26 87 135
11 11 11 12

2 14

1453
406
29

16 18 20

AFI
GETI-PP
RW-PP

[
292
i)

21
296
16

429
700

420
267

411
81

427

Table 5: Comparison of run-times of different algorithms for
varying amount of random noise.

4.4 Effect of higher random noise

In the experiments shown so far, random noise added to the syn
thetic data was limited by the size (number of transactidrthe
smallest base (or true) pattern. This was done (1) to male sur
that the truth remains meaningful and (2) to make the pammet
space search feasible for mining algorithm AFI, which is pam
tationally expensive when the random noise in the data ib.hig
However, in some real-life applications, small but truegrais are
hidden in even larger amounts of random noise. In such céses,
is still desired that algorithms could recover as many $icgmt
and useful patterns from the dataset as possible. Hencé&athe

were set equal. ‘Stricter’ parameter combinations (higbpsut
threshold, small error tolerance) take less time to finighzence
will be tested before the ‘less strict’ ones that have smagipsrt
threshold and high error tolerance. Any combination of peaters,
support threshold and error tolerance, for which the aloridoes
not finish in timed, is not considered while selecting the optimal
parameters.

We compare the performance of different algorithms undeemo
noise only on synthetic dat& since it appears to be closest to a
real dataset. In addition to the original noise levels of @%, 4%,
6%, and 8% considered in the previous experiment, noisdsleve
of 10%, 12%, and 14% were also tried. As the algorithm ‘AFI’
could not finish certain parameter combinations at noisel lef/
14% within time §, we use the second scheme above to search the
parameter space. Although other algorithms also took Ionigey
were able to finish all the runs in timde Figure 5 shows the results
on synthetic dat& including more noise levels 10%, 12%, and
14%. It is clear the performance of all the algorithms sufféne
to more random noise in the data. However, performance of ‘RW
seems to suffer more than the others as it is picking moréapir
items. Also as ‘AFI’ could not finish certain runs at noisedeid %
in time 6 and hence had to choose the optimal parameters from a
smaller parameter space, its performance falls at noiss 1e%.
Moreover, as we derive ‘AC-CLOSE’ patterns from the ‘AFI'tpa
terns using the core block constraint, performance of ‘AGOGE’
falls as well. A more efficient implementation of ‘AC-CLOSE’
may not have this problem. Interestingly, in this case ‘GERd
‘GETI-PP’ have better performance than ‘RW-PP’ but as we see
from the variance of the top% (wherek = 16.67 (% of the total
runs)) significance values (figure 5), ‘GETI’ and ‘GETI-PResns
to be less robust as the noise in the data increases.

5. CONCLUSIONS

In this paper, we have proposed an evaluation framework and
showed its applicability to compare different approximpéggtern
mining algorithms on both synthetic and real datasets.oftlg
are the general conclusions of our evaluation study:

e Our results suggest that enforcing the column error tolsran
(as introduced in AFI algorithm [5]) over the concepts obaty
ETI or recursive weak ETI, makes them much more effective in
terms of finding the true patterns with less spurious infdioma

o All the existing (‘AFI’ and ‘AC-CLOSE’) as well as our proped
variations (‘GETI-PP’ and ‘RW-PP’) of the algorithms, whicise
the column error tolerance. perform similarly when the optimal
parameters are selected. This is because adding an additmm
straint helps filter out patterns with spurious items.

e The computational efficiency of the variations ‘GETI-PPdan
‘RW-PP’ seems to be much better than ‘AFI’ specially at highe
noise levels. Moreover, their performance in terms of thaiguof
the patterns is also comparable to those generated by ‘AFI'.

These conclusions are in contrast to some of the previously p
lished studies ([6, 5, 2]). [6, 5] compared only ‘GETI' andFA
and suggested ‘AFI’ significantly outperforms ‘GETI". Weosted
that although this is true, the difference is not that sigaiit. More-
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Figure 5: Results on Synthetic Data 8 with more random noisedvels10%, 12%, 14%

over ‘GETI-PP’, a simple variation of ‘GETI’ we proposed per

forms comparable to ‘AFI'. [2] compared only ‘AC-CLOSE’ and

‘AFI’ and suggested ‘AC-CLOSE' performs better than ‘ARfow-

ever, we observed no significant differences in ‘AFI’ and ‘@COSE’.

We believe these differences are partly due to the fact tiesiqus
studies did not select the optimal parameters for eachittigpand
partly because of the choice of the datasets.

This comparative study, though far more comprehensive than

other previous studies, has several limitations. Most efttterns
considered in this paper are simple embedded patterns sythe
thetic datasets and hence may not reflect various aspeampiex
real datasets. Even the real zoo dataset is not very compterms
of its size and availability of ground truth. Though, it wdube
better to apply the evaluation framework on a complex retisi,
lack of ground truth knowledge makes this much harder.
There are still many interesting problems that need to tatiestu
In the evaluation framework, it would be interesting to inmrate
redundancy and other measures in the process of optimahptea
selection. On the algorithm side, extending approximattepa
mining algorithms to work with categorical and continuoadued
data could prove to be very beneficial to many applicationaiom
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