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1. INTRODUCTION 

A variety of recently available high throughput data sets, such as protein-protein interaction networks, 
microarray data and genome sequences, offer important insights into the mechanisms leading to the 
accomplishment of a protein’s function. However, the complexity of analyzing these data sets manually has 
motivated the development of numerous computational approaches for predicting protein function (1).  
Several of these approaches use data mining and machine learning techniques for this task, and have 
produced very encouraging results. For a recent comprehensive survey on this topic, see reference (2). 

Commonly used data mining techniques for the task of protein function prediction consider the functional 
classes to be used for annotation as independent of each other. However, it is well known that a protein 
may perform multiple functions, which may further have significant inter-relationships when viewed as 
concepts in a widely accepted hierarchical organization of functional classes such as Gene Ontology (3). 
Traditional techniques do not handle such inter-relationships, hence by incorporating them, the 
performance of protein function prediction algorithms could be improved. 

In this paper, we use the similarity measure defined by Lin (4) as a measure of the similarity between two 
functional classes, and modify the traditional k-nearest neighbor classification algorithm to take this 
similarity into account. Evaluation of the algorithm on functional classification of gene expression data 
indicates that the use of inter-relationships between functional classes indeed substantially improves the 
accuracy of the hypotheses generated by protein function prediction algorithms. 
 
2. PROPOSED APPROACH 

The traditional k-NN classifier determines the annotations of a protein by finding all abundant functional 
classes in its neighborhood, which is the set of k proteins nearest to p in the data set, using the formula: 

! 

classes(p) = {c | ( sim( feature(p), feature(p')) *[c " classes(p')])
p '"nbd ( p )

# > threshold1}
 

Kuramochi et al (5) showed that this simple algorithm performed comparably to more powerful 
classification algorithms such as SVMs for functional classification of gene expression data. We modified 
the above formula as follows, to take the similarity between functional classes into account: 

! 

classes(p) = {c | ( sim( feature(p), feature(p')) * max
c'"classes( p' )

{sim(c,c')}
p '"nbd ( p )

# ) > threshold2}
 

Thus, if a protein p is strongly expected to belong to class c, but its neighborhood does not contain enough 
evidence for this annotation, then the above formula enables other proteins in the neighborhood to 
contribute to this evidence, in proportion to the similarity of its most similar class to c. This incorporation 
of class similarities is expected to have the advantage of improving the predictions for proteins that do not 
have enough evidence for annotation by a certain class as per the original function prediction hypothesis, 
by enabling the transfer of annotations from close proteins annotated with similar classes. Thus, this 
method makes the hypothesis underlying automated function prediction more flexible by using the 
similarity of features of two proteins to indicate functional similarity (6) instead of functional equivalence, 
as assumed by most current techniques. 

We use the hierarchical organization of functional classes in the Gene Ontology to model the similarity of 
two classes (nodes) in GO using Lin’s measure (4): 

! 

sim(c1,c2) =
2 " [ln pms(c1,c 2))]

ln p(c1) + ln p(c2)

. Here, 
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class 
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measure evaluates the similarity of two nodes in a hierarchy in terms of the population of the least common 
ancestor, and is normalized to have a value in the range of [0,1]. The use of Gene Ontology to identify 
inter-relationships between functional classes, and the use of the above similarity measure to quantify these 
inter-relationships enables us to incorporate biologically significant knowledge into our function prediction 
algorithm, and improve the performance of previous algorithms, as detailed in the following section.  

                       
3. RESULTS AND DISCUSSION 

We used Mnaimneh et al’s gene expression data set (7) to test the effectiveness of incorporating functional 
class similarities into a functional classification algorithm. This data set measures the expression of 6306 
genes from S. cerevisiae under a set of 215 titration experiments. A set of 127 functional classes chosen 
were from the biological process ontology of GO, each having at least 10 members, and had been 
suggested by Myers et al to be testable in a wet lab (8). Figure 1 graphically shows the matrix of pair-wise 
similarities between these classes calculated using Lin’s similarity measure. The density of this matrix 
suggests that it is likely to contain spurious similarities due to factors such as the abundance of classes from 
the cellular process ontology in the target set. Hence, we used an appropriate similarity filtering threshold 
for each class, which was done as follows. The original data set was split into two halves, and the first half 
was used as input to the label similarity-incorporated k-NN classifier discussed above. Through a five-fold 
cross validation procedure, the classification performance was evaluated for each class in terms of the AUC 
measure for several thresholds, and the one producing the best performance was chosen as the best filtering 
threshold for each class. Figure 2 shows the resultant filtered class similarity matrix. 

Now, this similarity matrix is used for the predicting the functions of the genes in the other half of the 
original data set through a five-fold cross validation procedure, which is run multiple times in order to 
obtain robust estimates of the AUC scores for several classes. In addition, the basic k-NN classifier (5) is 
also used for predicting the functional classes of all the genes in the dataset through a five-fold cross 
validation procedure, and the AUC score of each class is computed. Figure 3 shows the comparison of the 
AUC scores of the 127 classes obtained using both the class similarity-equipped (y-axis) and the basic k-
NN algorithms (x-axis). This plot shows that the performance of 102 classes is improved by considering 
similarities between classes, with the improvement being very significant for several classes, while the 
performance for the other 25 classes is only slightly deteriorated. These results show the utility of modeling 
similarities between functional classes as a way of incorporating the knowledge embodied in Gene 
Ontology, and thus producing more accurate predictions for proteins. Generalization of this concept for use 
with other classification methods, such as SVM, and other types of biological data, such as protein-protein 
interaction networks, is in progress. 
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Fig 2: Optimally filtered class similarity 
matrix producing best AUC performance 

Fig 1: Original class similarity matrix 
derived using Lin’s measure 

Fig 3: Improvement in AUC score 
of each class using class similarity 


