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ABSTRACT

Association analysis is one of the most popular analysis
paradigms in data mining. In this paper, we present different
types of association patterns and discuss some of their ap-
plications in bioinformatics. We present a case study show-
ing the usefulness of association analysis-based techniques
for pre-processing protein interaction networks. Finally, we
discuss some of the challenges that need to be addressed to
make association analysis-based techniques more applica-
ble for bioinformatics.

1. INTRODUCTION

Association analysis [1, 2]1 is one of the most popular anal-
ysis paradigms in data mining. The techniques in this field
seek to find patterns that describe the relationships among
the binary attributes (variables) used to characterize a set
of objects. The iconic example of data sets analyzed by
these techniques is market basket data, where the objects
are transactions consisting of sets of items purchased by a
customer, and the attributes are binary variables that indi-
cate whether or not an item was purchased by a particu-
lar customer. The interesting patterns in these data sets are
either sets of items that are frequently purchased together
(frequent itemset patterns) or rules that capture the fact that
the purchase of one set of items often implies the purchase
of a second set of items (association rule patterns). Associ-
ation patterns, whether rules or itemsets, are local patterns
in that they hold only for a subset of transactions. The size
of this set of supporting transactions, which is known as the
support of the pattern, is one measure of the strength of a
pattern. A key strength of association pattern mining is that
the potentially exponential nature of the search can often
be made tractable by using support based pruning of pat-
terns [1], i.e., the elimination of patterns supported by too
few transactions early on in the search process.

In this paper, we present some standard formulations of
association patterns, discuss a novel application of associ-
ation analysis to the pre-processing of protein interaction

1Not to be confused with statistical association analysis [3].

data, and cite examples of challenges to be addressed to
make association analysis more widely applicable for ad-
dressing bioinformatics problems.

2. ASSOCIATION PATTERNS
This section introduces some commonly used association
patterns that have been proposed in the literature.

2.1. Traditional Frequent Patterns

Traditional frequent pattern analysis [2] focuses on binary
data sets, such as the market basket data discussed above.
These data sets can be represented as a binary matrix con-
taining n rows (transactions) andm columns (items), and
ijth entry is1 if the ith transaction contains thejth item,
and0 otherwise. Given such a representation, a key task in
association analysis is to find frequent itemsets in this ma-
trix, which are sets of items that frequently occur together
in a transaction. The strength of an itemset is measured by
its support, which is the number (or fraction) of transac-
tions in the data set in which all items of the itemset appear
together. Interestingly, support is an anti-monotonic mea-
sure in that the support of an itemset in a given data set can
not be less than any of its supersets. This anti-monotonicity
property allows the design of several efficient algorithms,
such as Apriori [1] and FPGrowth [4], for discovering fre-
quent itemsets in a given binary data matrix. With judi-
cious choices for the support threshold, the number of pat-
terns discovered from a data set can be made manageable.
Also, note that, in addition to support, a number of addi-
tional measures have been proposed to determine the inter-
estingness of association patterns [5].

2.2. Hyperclique Patterns

A hyperclique pattern [6] is a type of frequent pattern that
contains items that are strongly associated with each other
over the supporting transaction, and are quite sparse (mostly
0) over the rest of the transactions. In traditional frequent
pattern mining, choosing the right support threshold can
be quite tricky. If support threshold is too high, we may
miss many interesting patterns involving low support items.



If support is too low, it becomes difficult to mine all the
frequent patterns because the number of extracted patterns
increases substantially, many of which may relate a high-
frequency item to a low-frequency item. Such patterns, which
are calledcross-support patterns, are likely to be spurious.
Hyperclique patterns avoid these cross-support patterns by
defining an anti-monotonic association measure known as
h-confidencethat ensures a high affinity between the item-
sets constituting a hyperclique pattern [6]. Formally, the
h-confidence of an itemsetX = {i1, i2, . . . im}, denoted as
h − confidence(X), is defined as,

h − confidence(X) =
s(i1, i2, . . . , ik)

max[s(i1), s(i2), . . . , s(ik)]

wheres(X) is the support of an itemsetX. Those itemsets
X that satisfyh− confidence(X) ≥ α, whereα is a user-
defined threshold, are known as hyperclique patterns. These
patterns have been shown to be useful for various applica-
tions, including data cleaning [7], and finding functionally
coherent sets of proteins [8]. In the next section, we discuss
how theh−confidence measure can be used to pre-process
protein interaction networks effectively.

3. PRE-PROCESSING OF PROTEIN
INTERACTION NETWORKS

One of the most promising forms of biological data that are
used to study the functions and other properties of proteins
at a genomic scale are protein interaction networks. These
networks provide a global view of the interactions between
various proteins that are essential for the accomplishmentof
most protein functions. Due to the importance of the knowl-
edge of these interactions, several high-throughput methods
have been proposed for discovering them [9].

A protein interaction network can be represented as an
undirected graph, where proteins are represented by nodes
and protein-protein interactions as edges. Due to this sys-
tematic representation, several computational approaches have
been proposed for the prediction of protein function from
these graphs [10, 11, 12]. Also, owing to the rich functional
information in these networks, several of these approaches
have produced very good results, particularly those that use
the entire interaction graph simultaneously and use global
optimization techniques to make predictions [12].

However, despite the advantages of protein interaction
networks, they have several weaknesses which affect the
quality of the results obtained from their analysis. The most
prominent of these problems is that of noise in the data,
which manifests itself primarily in the form of spurious or
false positive edges [13]. Studies have shown that the pres-
ence of noise has significant adverse effects on the perfor-
mance of protein function prediction algorithms [14]. An-
other important problem facing the use of these networks is
their incompleteness, i.e., the absence of biologically valid
interactions even from large sets of interactions [13]. This

absence of interactions from the network prevents even the
global optimization-based approaches from making effec-
tive use of the network beyond what is available, thus lead-
ing to a loss of potentially valid predictions.

A possible approach to address these problems is to trans-
form the original interaction graph into a new weighted graph
such that the weights assigned to the edges in the new graph
more accurately indicate their reliability. The utility ofhy-
percliques in noise removal from binary data [7], coupled
with the representation of protein interaction graphs as a bi-
nary adjacency matrix to which association analysis tech-
niques can be applied, motivated Pandey et al. [15] to ad-
dress the graph transformation problem using an approach
based onh − confidence measure discussed earlier. This
measure is used to estimate the common neighborhood sim-
ilarity of two proteinsP1 andP2 as

h − confidence(P1, P2) = min

(

|NP1
∩ NP2

|

|NP1
|

,
|NP1

∩ NP2
|

|NP2
|

)

whereNP1
andNP2

denote the sets of neighbors ofP1 and
P2 respectively. As discussed earlier, this definition ofh −
confidence is only applicable to binary data or, in the con-
text of protein interaction graphs, unweighted graphs. How-
ever, the notion ofh − confidence can be readily general-
ized to networks where the edges carry real-valued weights
indicating their reliability. In this case, the above equation
can be conveniently modified to calculateh−confidence(P1, P2)
by making the following substitutions: (1)|NP1

| → sum of
weights of edges incident onP1 (similarly for P2) and (2)
|NP1

∩ NP2
| → sum of minimum of weights of each pair

of edges that are incident on a proteinP from bothP1 and
P2. In both these cases, theh − confidence measure is
guaranteed to be bounded within the[0, 1] interval.

Now, with this definition, it is hypothesized that protein
pairs having a highh − confidence score are expected to
have a valid interaction between them, since a high value of
the score indicates a high common neighborhood similar-
ity, which in turn reflects greater confidence in the network
structure for that interaction. For the same reason, interac-
tions between protein pairs having a lowh − confidence

score are expected to noisy or spurious. Accordingly, Pandey
et al [15] proposed the following graph transformation ap-
proach for pre-processing available interaction data sets. First,
using the input interaction networkG = (V,E), the h −
confidence measure is computed between each pair of con-
stituent proteins, whether connected or unconnected by an
edge in the input network. Next, a threshold is applied to
drop the protein pairs with a lowh − confidence to re-
move spurious interactions and control the density of the
network. The resultant graphG′ = (V,E′) is hypothesized
to be the less noisy and more complete version ofG, since it
is expected to contain fewer noisy edges, some biologically
viable edges that were not present in the original graph, and
more accurate weights on the remaining edges.
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(a) Results on the combined network
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(b) Results on the DIPCore network

Fig. 1. Comparison of performance of various transformed
networks and the input networks (Best viewed in color).

In order to evaluate the efficacy of the resultant net-
works for protein function prediction, the original and the
transformed graphs was provided as input to the Function-
alFlow protein function prediction algorithm [12]. The per-
formance was also compared with transformed versions gen-
erated using other common neighborhood similarity mea-
sures for such networks, such as Samanta et al [11]’s p-
value measure. Figure 1 shows the performance of this algo-
rithm on these transformed versions of two standard interac-
tion networks, namely thecombineddata set constructed by
combining several popular yeast interaction data sets (com-
bined) and weighted using the EPR Index tool [16], and
the other being a confident subset of the DIP database [16]
(DIPCore). The performance is evaluated using the accu-
racy of the top scoring1000 predictions of the functions
of the constituent proteins generated by a five-fold cross-
validation procedure, where the functional annotations are
obtained from the classes at depth two of the FunCat func-
tional hierarchy [17].

The results in Figure 1 show that for both the data sets,
theh − confidence-based transformed version(s) substan-
tially outperform the original network and the other mea-
sures for this task. The margin of improvement on the highly
reliable DIPCore data set is almost consistently5% or above,
which is quite significant. Similar results are observed using
the complete precision-recall curves. The interested reader
is referred to [15] for more details of the study.

4. CONCLUDING REMARKS

Association analysis has proved to be a powerful approach
for analyzing traditional market basket data, and has even
been found useful for some problems in bioinformatics [18,
8, 15]. However, there are a number of other important
problems in this field, such as finding biomarkers using dense
data like SNP data and real-valued data like gene-expression
data, where such techniques could prove to be very useful,
but cannot currently be easily and effectively applied.

An important example of patterns that are not effectively
captured by the traditional association analysis framework
and its current extensions, is a group of genes that are co-
expressed together across a subset of conditions in a gene
expression data set, which is real-valued. Such patterns
have often been referred to asbiclusters. Methods for trans-
forming these data sets into binary form (for example, via
discretization [18, 19, 20]) often suffer from loss of critical
information about the actual values. Hence, a variety of bi-
clustering algorithms have been developed for finding such
patterns from gene expression data, such as ISA [21], Cheng
and Church’s algorithm [22] and SAMBA [23]. Although
these algorithms are often able to find useful patterns, they
suffer from a number of limitations. The most important one
is an inability to efficiently explore the entire search space
for such patterns without resorting to heuristic approaches
that compromise the completeness of the search. Pandey et
al. [24] have presented one of the first methods for directly
mining association patterns from real-valued data, particu-
larly gene expression data, that does not involve a transfor-
mation of the data. These techniques are able to discover all
patterns satisfying the given constraints, unlike the biclus-
tering algorithms that may only be able to discover a subset
of these patterns. There are several open opportunities for
designing better algorithms for addressing this problem.

Another challenge that has inhibited the use of associa-
tion analysis in bioinformatics–even when the data is binary–
is the density of several types of data sets. Algorithms for
finding association patterns often break down when the data
becomes dense because of the large number of patterns gen-
erated, unless a high support threshold is used. However,
with a high threshold, many interesting, low-support pat-
terns are missed. One particularly important category of ap-
plications with dense data are applications involving class
labels, such as finding connections between genetic vari-
ations and disease. Consider the problem of finding con-
nections between genetic variations and disease using bina-
rized version of SNP-genotype data, which is 33% dense
by design, since each subject must have one of the three
variations of SNP pairs:major-major, major-minor, minor-
minor. Most of the existing techniques for this problem
only apply univariate analysis and rank individual SNPs us-
ing measures like p-value, odds ratio etc [3]. Some ap-
proaches like Multi-Dimensionality Reduction (MDR) [25]



and Combinatorial Partitioning Methods (CPM) [26], which
are designed to identify groups of SNPs, can only be applied
to data sets with small number (few dozens) of SNPs. Also,
existing discriminative pattern mining algorithms [27, 28]
are only able to prune infrequent non-discriminative pat-
terns, not the frequent non-discriminative patterns, which is
the biggest challenge for dense data sets like SNP data and
gene expression data. New association analysis approaches
should be designed to enable efficient discriminative pattern
mining on dense and high dimensional data, where effec-
tively making use of class label information for pruning the
large search space is crucial.

In conclusion, significant scope exists for future research
on designing novel association analysis techniques for com-
plex biological data sets and their associated problems. Such
techniques will significantly aid in realizing the potential of
association analysis for discovering novel knowledge from
these data sets and solve important bioinformatics problems.
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