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ABSTRACT
An important analysis performed on microarray gene-expression
data is to discover biclusters, which denote groups of genes
that are coherently expressed for a subset of conditions. Var-
ious biclustering algorithms have been proposed to find dif-
ferent types of biclusters from these real-valued gene-expression
data sets. However, these algorithms suffer from several lim-
itations such as inability to explicitly handle errors/noise in
the data; difficulty in discovering small bicliusters due to
their top-down approach; inability of some of the approaches
to find overlapping biclusters, which is crucial as many genes
participate in multiple biological processes. Association pat-
tern mining also produce biclusters as their result and can
naturally address some of these limitations. However, tradi-
tional association mining only finds exact biclusters, which
limits its applicability in real-life data sets where the biclus-
ters may be fragmented due to random noise/errors. More-
over, as they only work with binary or boolean attributes,
their application on gene-expression data require transform-
ing real-valued attributes to binary attributes, which of-
ten results in loss of information. Many past approaches
have tried to address the issue of noise and handling real-
valued attributes independently but there is no systematic
approach that addresses both of these issues together. In
this paper, we first propose a novel error-tolerant biclus-
tering model, ‘ET -bicluster’, and then propose a bottom-
up heuristic-based mining algorithm to sequentially discover
error-tolerant biclusters directly from real-valued gene-expression
data. The efficacy of our proposed approach is illustrated
in the context of two biological problems: discovery of func-
tional modules and discovery of biomarkers. For the first
problem, we used two real-valued S.Cerevisiae microarray
gene-expression data sets and evaluate the biclusters ob-
tained in terms of their functional coherence as evaluated
using the GO-based functional enrichment analysis. The
statistical significance of the discovered error-tolerant biclus-
ters as estimated by using two randomization tests, reveal
that they are indeed biologically meaningful and statisti-
cally significant. For the second problem of biomarker dis-
covery, we used four real-valued Breast Cancer microarray
gene-expression data sets and evaluate the biomarkers ob-
tained using MSigDB gene sets. We compare our results
obtained from both the problems, with a recent approach
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RAP and clearly demonstrate the importance of incorpo-
rating noise/errors in discovering coherent groups of genes
from gene-expression data.

1. INTRODUCTION
Recent technical advancements in DNA microarray tech-

nologies have led to the availability of large-scale gene ex-
pression data. These data sets can be represented as a ma-
trix G with genes as rows and different experimental con-
ditions as columns, where Gij denotes the expression value
of gene i for an experimental condition j. An important
research problem of gene-expression analysis is to discover
submatrix patterns or biclusters in G. These biclusters are
essentially subsets of genes that show coherent values across
a subset of experimental conditions. However, coherence
among the data values can be defined in various ways. For
instance, Madeira et al [22] classify biclusters into the fol-
lowing four different categories based on the definition of
coherence: (i) biclusters with constant values, (ii) biclusters
with constant rows or columns, (iii) biclusters with coherent
values, and (iv) biclusters with coherent evolutions.

Many approaches ([4, 9, 12, 22, 32, 3, 27]) have been pro-
posed to discover biclusters from gene-expression data. Dif-
ferent biclustering algorithms have been designed to discover
different types of biclusters. For instance, coclustering [12]
and SAMBA [32] find constant value biclusters, Cheng and
Church (CC) [9] find constant row biclusters and OPSM [3]
find coherent evolutions biclusters. Though there are dif-
ferences in biclustering algorithms in terms of the type of
bicluster they discover, there are some common issues with
these algorithms in general. First critical issue with all of
these biclustering algorithms is that they are oblivious to
noise/errors in the data and require all values in the discov-
ered bicluster to be coherent. This limits the discovery of
valid biclusters that are fragmented due to random noise in
the data. Second issue with at least some of the biclustering
algorithms is their inability to find overlapping biclusters.
For instance, coclustering is designed to only look for dis-
joint biclusters and Cheng and Church’s approach, which
masks the identified bicluster with random values in each it-
eration, also finds it hard to discover overlapping biclusters.
Third, most of the algorithms are top-down greedy schemes
that start with all rows and columns, and then iteratively
eliminate them to optimize the objective function. This gen-
erally results in large biclusters, which although are useful,
do not provide information about the small biological func-
tional classes. Finally, all the biclustering algorithms employ
heuristics and are unable to search the space of all possible
biclusters exhaustively.

Association pattern mining can naturally address some of
the issues faced by biclustering algorithms i.e, finding over-



lapping biclusters and performing an exhaustive search. How-
ever, there are two major drawbacks of traditional associa-
tion mining algorithms. First, these algorithms use a strict
definition of support that requires every item (gene) in a pat-
tern (bicluster) to occur in each supporting transaction (ex-
perimental condition). This limits the recovery of patterns
from noisy real-life data sets as patterns are fragmented due
to random noise and other errors in the data. Second, since
traditional association mining was originally developed for
market basket data, it only works with binary or boolean
attributes. Hence it’s application to data sets with contin-
uous or categorical attributes requires transforming them
into binary attributes, which can be performed by using dis-
cretization [30, 28, 13], binarization [2, 11, 10, 23] or by
using rank-based transformation [6]. In each case, there is
a loss of information and associations obtained does not re-
flect relationships among the original real-valued attributes,
rather reflect relationships among the binned independent
values [16].

Efforts have been made to independently address the two
issues mentioned above and to the best of our knowledge,
no prior work has addressed both the issues together. For
example, various methods [34, 33, 21, 20, 29, 7, 5, 8, 25, 26]
have been proposed in the last decade to discover approxi-
mate frequent patterns (often called error-tolerant itemsets
(ETIs)). These algorithms allow patterns in which a spec-
ified fraction of the items can be missing - see [14] for a
comprehensive review of many of these algorithms. As the
conventional support (i.e the number of transactions sup-
porting the pattern) is not anti-monotonic for error-tolerant
patterns, most of these algorithms resort to heuristics to dis-
cover these patterns. Moreover, all of these algorithms are
developed only for binary data.

Another recent approach [24] addressed the second issue and
extended association pattern mining for real-valued data.
The extended framework is referred to as RAP (Range Sup-
port Pattern). A novel range and range support measures
were proposed, which ensure that the values of the items
constituting a meaningful pattern are coherent and occurs
in a substantial fraction of transactions. This approach re-
duces the loss of information as incurred by discretization-
and binarization-based approaches, as well as enables the
exhaustive discovery of patterns. One of the major advan-
tages of using an approach such as RAP , which adopts a
very different pattern discovery algorithm as compared to
more traditional biclustering algorithms such as CC or ISA,
is the ability to find smaller or completely novel biclusters.
Several examples shown in [24] illustrated that RAP can
discover some biologically relevant smaller biclusters, which
are either completely missed by biclustering approaches such
as CC or ISA, or are found embedded in larger biclusters.
In either case, they are not able to enrich the smaller func-
tional classes as RAP biclusters do. Despite these advan-
tages, RAP framework does not directly address the issue
of noise and errors in the data.

As it has been independently shown that both issues, han-
dling real-valued atributes and noise, are critical and af-
fect the results of the mining process, it is important to
address them together. In this paper, we propose a novel
extension of association pattern mining to discover error-
tolerant biclusters (or patterns) directly from real-valued
gene-expression data. We refer to this approach as ‘ET -
bicluster’ for error-tolerant bicluster. This is a challenging
task because the conventional support measure is not anti-
monotonic for the error-tolerant patterns and therefore lim-

its the exhaustive search of all possible patterns. Moreover
the set of values constituting the pattern in the real-valued
data is different than the binary data case. Therefore, in-
stead of using the traditional support measure, we used the
range and RangeSupport measures as proposed in [24] to
ensure the coherence of values and for computing the contri-
bution from supporting transactions. RangeSupport is anti-
monotonic for both dense and error-tolerant patterns, how-
ever, range is not anti-monotonic for error-tolerant patterns.
Due to this, exhaustive search is not guaranteed, however it
is important to note that the proposed ET -bicluster frame-
work still, by design, finds more number of patterns (biclus-
ters) than it’s counterpart RAP . Therefore using range as
a heuristic measure, we describe a bottom-up pattern min-
ing algorithm, which sequentially generates error-tolerant
biclusters that satisfy the user-defined constraints, direcly
from the real-valued data.

To demonstrate the efficacy of our proposed ET -bicluster
approach, we compare it’s performance with RAP in the
context of two biological problems: (a) functional module
discovery, and (b) biomarker discovery. Since both ET -
bicluster and RAP use same pattern mining framework,
comparing them helps to quantify the impact of noise and
errors in the data on the discovery of coherent groups of
genes in an unbiased way.

For the first problem of functional module discovery, we used
real-valued S.cerevisiae microarray gene-expression data sets
and discovered biclusters using both ET -bicluster and RAP
algorithm. To illustrate the importance of directly incor-
porating data noise/errors in biclusters, we compared the
error-tolerant biclusters and RAP biclusters using gene on-
tology (GO) based biological processes annotation hierarchy
[1] as the base biological knowledge. Specifically, for each
{bicluster, GO term} pair, we computed a p-value using
a hypergeometric distribution, which denotes the random
probability of annotating this bicluster with the given GO
term. For the second problem of biomarker discovery, we
combined four real-valued case-control Breast Cancer gene-
expression data sets, and discovered discriminative biclus-
ters (or biomarkers) from the combined data set using both
ET -bicluster and RAP . Again, to illustrate the impor-
tance of explicitly incorporating noise/errors in the data, we
compared the biomarkers based on their enrichment scores
computed using MSiGDB gene sets [31]. MSigDB gene sets
are chosen as the base biological knowledge in this case be-
cause they include several manually annotated cancer gene
sets. The results obtained for both the functional module
discovery and biomarker discovery problem clearly demon-
strate that error-tolerant biclusters are not only bigger than
RAP biclusters but are also biologically meaningful. Using
randomization tests, we further demonstrated that error-
tolerant biclusters are indeed statistically significant and
are neither obtained by random chance nor capture ran-
dom structures in the data. Overall, the results presented
for both the biological problems strongly suggest that our
proposed ET -bicluster approach is a promising method for
the analysis of real-valued gene-expression data sets.

Contributions:

• We proposed a novel association pattern mining based
approach to discover error-tolerant biclusters from noisy
real-valued gene-expression data.

• Our work highlights the importance of tolerating er-
ror(s) in the biclusters in order to capture the true un-
derlying structure in the data. This is demonstrated



using two case studies: functional module discovery
and biomarker discovery. Using various real-valued
gene expression data sets, we illustrated that our pro-
posed algorithm ET -bicluster can discover additional
and bigger biologically relevant biclusters as compared
to RAP .

• We used two randomization techniques to compute the
empirical p-value of all the discovered error-tolerant
biclusters and demonstrated that they are statistically
significant and it is highly unlikely to have obtained
them by random chance.

Organization: The rest of the paper is organized as fol-
lows. In Section 2, we discuss our proposed algorithm ET -
bicluster. Section 3 details the experimental methodology
for evaluating the error-tolerant biclusters and their com-
parison with RAP biclusters, and the results obtained. We
present a summary of the findings in section 4 followed by
a discussion on limitations and future work in section 5.

2. ERROR-TOLERANT BICLUSTER MODEL
FOR REAL-VALUED DATA

As shown in [22], there can be different types of biclus-
ters one can define on a real-valued data based on different
measures of coherence among data values. In this paper, we
focus on constant row/column biclusters, as they are well
suited for the ET -bicluster framework and also considered
as one of the promising ways to capture functional coher-
ence from the microarray data sets [9]. However, discover-
ing error-tolerant biclusters directly from real-valued data
is a challenging task as several issues arise either due to
handling of real-valued attributes or due to relaxing the bi-
cluster requirements to incorporate noise/errors in the data.
Specifically, following three issues need to be discussed be-
fore we present the algorithm.

(a) Bicluster Composition: Unlike the case of binary
data where collection of 1s was defined as a bicluster, in
the case of real-valued data, similar values across a set of
rows constitute a bicluster. These values can be any val-
ues in the set R and athough similar across rows, they can
be different for different rows. The errors in the biclusters
defined on real-valued attributes are introduced in a way
similar to the binary case. However, like binary case in
which all non-error entries are same (1s), in real-valued case,
imposing such a requirement would be very harsh. There-
fore, a measure is needed to check the coherence among the
gene-expression values. For this purpose, we use the range
measure, which checks for each transaction if the relative
range of the gene-expression values in a bicluster, given as
(maxval −minval)/minval, is within a pre-specified thresh-
old α. Furthermore, the contribution of each supporting
transaction is measured as the minimum of the values taken
by any of the genes in the bicluster in that transaction.
Overall, to measure the strength of the bicluster, we use
the RangeSupport (RS) measure [24], which sums up the
contribution of each supporting transaction. This is similar
to the support measure that is generally used in association
pattern mining for binary data, however unlike binary case,
each supporting transaction may not contribute equally for
RangeSupport of a bicluster in real-valued data. The range
and RangeSupport measures in combination capture the re-
quirement that expression values of the genes in a biclus-
ter are coherent for several transactions, and hence can be
used to mine interesting biclusters from the real-valued data.
Note that although both measures range and RangeSupport
are anti-monotonic for exact biclusters, range is not anti-

Figure 1: A sample error-tolerant bicluster

monotonic for error-tolerant biclusters. Due to this reason,
ET -bicluster does not exhaustively find all error-tolerant
biclusters, but it is noteworthy that it still subsume all bi-
clusters found by RAP and can even find biclusters that are
fragmented due to noise/errors in the data. One the other
hand, as RAP is oblivious to errors/noise in the data, it
either completely miss these fragmented but valid biclusters
or find them as separate parts.

(b) Positive/Negative Values: Unlike binary data, real-
valued microarray data has both positive and negative val-
ues. In this case, it is important to consider the sign of
the value to discover meaningful biclusters. Similar to [24],
we address this problem by enforcing that a transaction can
only be termed as the supporting transaction of a bicluster if
for this transaction, the expression values of all the genes in
the bicluster are of the same sign. This also help make bio-
logical interpretability easier as the sign enforcement would
entail finding only those biclusters in which all the genes
are either up-regulated or down-regulated for a given exper-
imental condition. However note that the same genes can
be up-regulated for one experimental condition and down-
regulated for another.

(c) Error/Non-error Values: In binary case, 1 is always a
non-error value and 0 an error value. This notion is no more
valid for the real-valued data case. For example, consider an
error-tolerant bicluster shown in figure 1 with 5 genes (a, b,
c, d, e) and 8 experimental conditions (1 . . . 8). For the 1st
condition, 8 is an error value, for the 3rd condition 9 is an
error value, and for the 5th condition, 20 is an error value.
Similarly, non-error values can change for each transaction.
Thus, it becomes important to keep track of error and non-
error values while mining for biclusters in the real-valued
data.

Now, with the understanding of specific challenges and po-
tential ways to address them, we now give the formal defi-
nition of error-tolerant biclusters for a real-valued data.

2.1 Definition of Error-tolerant Biclusters
Intuitively, a bicluster B is said to be an error-tolerant

bicluster if the following two general conditions are satisfied:

• RangeSupport of bicluster B should be more than the
user-defined threshold, RS.

• All supporting transactions of bicluster B should have
mostly non-error values i.e. values should be generally
coherent (governed by a user-defined parameter ǫ for
maximum number of permissible errors).

Definition 1. Let D be a real-valued gene-expression data,
RS be the RangeSupport threshold, E be a function that



takes a set of real values as input and returns the num-
ber of errors in them using range criteria, and let error
threshold be ǫ ∈ (0, 1]. A bicluster B (with genes G) is
an error-tolerant bicluster ET -bicluster(ǫ) in the real-valued
attribute domain, if there exists a set of transactions T ∈ D
such that the following two conditions hold:

Range Support(B) ≥ RS (1)

∀t ∈ T, E(Dt,G) ≤ ǫ · |G| (2)

Thus according to the definition, fraction of errors in each
supporting transaction of the bicluster should not exceed ǫ.

2.2 Algorithm to Discover Error-tolerant Bi-
clusters from Real-valued Data

Starting with singletons, the ET -bicluster algorithm se-
quentially generates (k+1)-level biclusters from k-level bi-
clusters. At k = 1, genes that satisfy the RangeSupport
(computed as the summation of absolute values for all trans-
actions) criterion are valid singletons. Generally speaking,
any (k+1)-level bicluster is a valid bicluster if it satisfies the
RangeSupport criterion and each supporting transaction of
the bicluster has at most ǫ fraction of errors.

ET -bicluster algorithm generates (k+1)-level biclusters from
k-level biclusters by one of the two steps: error extension or
non-error extension. Specifically, if ⌊(k+1)·ǫ⌋ = ⌊k ·ǫ⌋, it’s a
non-error extension step (no more errors values are permit-
ted) or else it will be a error-extension step (one additional
error value is permitted). We used two lemmas proved in
[20] to efficiently perform these extension steps. In non-error
extension step, for each (k+1)-level bicluster, range criteria
is only checked for the intersection of supporting transac-
tions of all its k-level biclusters. On the other hand, in the
error-extension step, range criteria is checked for the union
of supporting transactions of all its k-level biclusters.

Checking the range criterion to ensure the coherence of val-
ues depends on the number of permissible errors at a par-
ticular bicluster-level (k · ǫ). For instance, if the permissi-
ble number of errors is 1, then range criterion for a given
transaction is computed as follows. First, for each transac-
tion, all the expression values in a bicluster are sorted and
then the range criterion is checked in usual manner by ei-
ther discarding the minimum value or the maximum value.
If the range criterion is satisfied in any of the two cases,
transaction is classified as the supporting transaction for
that bicluster. If for instance, number of permissible errors
are 2 at any bicluster-level, we check the range criterion
for three cases: discarding the 2 minimum values; discard-
ing the 2 maximum values; or discarding 1 minimum value
and 1 maximum value. Again, if any of the case satisfies
the range criterion, transaction is classified as a supporting
transaction. Similarly, we exhaustively make all cases when
number of permissible errors are more than 2. However,
note that with ǫ = 0.25 (value considered in this paper) and
itemset size even as big as 12, we only need to make these
cases for 3 permissible errors.

2.3 An Example
Considering a sample real-valued data with 5 genes (a,

b, c, d, and e) and 8 experimental conditions (1 through
8) as shown in figure 1, below we demonstrate the steps of
ET -bicluster algorithm. Input parameters: Range Support
threshold = 5; α = 0.5; ǫ = 0.25
Step 1: k = 1. As range support for each gene is greater
than 5, all the genes are returned as valid singletons.

Step 2: k = 2. Since ⌊k ∗ ǫ⌋ = ⌊k − 1⌋ ∗ ǫ, this is a non-
error extension step. Consider for example bicluster ab, for
α = 0.5, it’s supporting transactions are {1,2,3,4,7,8}. To
illustrate, while transaction 1 satisfies the range criteria (i.e.
2.1−2 ≤ 0.5∗2) and hence is valid, transaction 5 is not valid
since 20− 8 > 0.5 ∗ 8. Now, RangeSupport of bicluster ab is
given as the sum of the contributions from each supporting
transaction i.e. RS(ab) = 2 + 2.1 + 4 + 6.5 + 3 + 2 = 19.6.
Since, RS(ab) > 5, ab is a valid bicluster. Similarly, biclus-
ters ac, ad, ae, bc, bd, be, cd, ce, de are all valid biclusters.
Step 3: k = 3. Again since ⌊k ∗ ǫ⌋ = ⌊k − 1⌋ ∗ ǫ, this is
a non-error extension step. Consider for example, bicluster
abc, range criterion is checked for intersection of support-
ing transactions of biclusters ab, bc and ac and hence sup-
porting transactions are identified as {2,4,8}. Now, since
RS(abc) = 10.6, which is greater than the thereshold 5, abc
is a valid bicluster. Similarly, abd, abe, bce, bde and cde are
all valid biclusters.
Step 4: k = 4. In this case, since ⌊k ∗ ǫ⌋ 6= ⌊k − 1⌋ ∗ ǫ, this
is an error extension step. The number of permissible errors
at this level is k ∗ ǫr = 4 ∗ 0.25 = 1. Consider for example,
bicluster abcd, range criterion is checked for the union of
supporting transactions of all its level-3 biclusters subsets.
Hence, we get {1,2,3,4,5,6,8} as the set of supporting trans-
actions. For illustration, take an example of transaction
1. As only one error value is permitted, range criterion is
checked as follows: (((2ndmax−min)/min) = (2.1−2)/2 =
0.05 < α(0.5)). Therefore, this is a supporting transaction.
On the other hand, transaction 7, even after discarding one
error value does not satisfy the range criterion for bicluster
abcd. Also RS(abcd) = 33.6, hence abcd is a valid bicluster.
Similarly, abce is also a valid bicluster.
Step 5: k = 5. Since, ⌊k ∗ ǫ⌋ = ⌊k − 1⌋ ∗ ǫ, this is a non-
error extension step. A bicluster abcde will be generated
with set of supporting transactions as {1,2,3,4,5,6,8}. Now
since RS(abcde) = 33.6, abcde is a valid bicluster.

It is important to note that since RAP does not explic-
itly handle errors/noise in the data, it cannot discover the
bicluster abcde, which is fragmented due to errors.

3. EXPERIMENTAL RESULTS AND DISCUS-
SION

We implemented our proposed association pattern mining
approach ‘ET -bicluster’ in C++. In this paper, we only
compare our proposed approach with RAP , as RAP has
already been shown to outperform biclustering approaches
such as ISA and Cheng and Church, especially for finding
small biclusters. Also, as mentioned in [24], transforma-
tion of data from real-valued attributes to binary attributes
leads to loss of distinction between various types of biclus-
ters (or patterns). Therefore, as the focus of this study is to
discover constant row biclusters, binarization of real-valued
gene-expression data is not meaningful. For this reason, we
only show results on real-valued data sets. Further, in order
to compare the performance of ‘ET -bicluster’ and RAP in
discovering coherent groups of genes, we considered two bi-
ological problems: discovery of functional modules (finding
coherent gene groups) and discovery of biomarkers (find-
ing coherent gene groups that are discriminative of the two
classes of patients: cases and controls).

Selecting Top Biclusters As association mining based ap-
proach generally produces a large number of biclusters that
often have substantial overlap with each other, this redun-
dancy in biclusters may bias the evaluation. Hence, we used
a commonly adopted selection methodology similar to the



one proposed by [27] to select upto 500 top biclusters. How-
ever, because error-tolerant biclusters generally have a large
set of supporting experimental conditions, even biclusters
with high overlap in gene dimension may get selected in the
top 500 biclusters. To avoid this situation, we computed the
size of a bicluster by the number of genes (|genes|) in it, not
by |genes| × |conditions| in it. Therefore, starting with the
largest bicluster (only in terms of the number of genes in it),
we greedily select upto 500 biclusters such that the overlap
among any of the selected biclusters is not more than 25%.
In case of a tie between the size of biclusters, bicluster with
lower Mean Square Error (MSE) value [9] is selected. Please
note that MSE of a bicluster is computed by discarding the
error values in it, since ET -bicluster is meant to look for
error-tolerant patterns.

3.1 Case Study 1 - Discovery of Functional Mod-
ules

We used the following two real-valued S.cerevisiae mi-
croarray gene-expression data sets for the discovery of func-
tional modules:

• Hughes et al’s data set [18]: This data set contains
a compendium of expression profiles corresponding to
300 diverse mutations and chemical treatments in S.
cerevisiae and was compiled to study the functions of
yeast genes on a large scale. The overall dimensions
of this data set are 6316 genes x 300 conditions, with
values (log10 ratio of expression values observed for
experimental condition and control condition) in the
range [-2,2].

• Mega Yeast data set [19]: This data set contains 501
yeast microarray experiments, including stress responses,
cell cycle, sporulation, etc. The overall dimensions of
this data set are 6447 genes x 501 conditions, with
values in the range [-12,12].

Functional Enrichment Analysis Since the discovered
biclusters represent groups of genes that are expected to
co-express with each other, we evaluated all the biclusters
discovered in terms of their functional coherence using the
biological processes annotation hierarchy of Gene Ontology
[1]. A p-value using a hypergeometric probability distri-
bution is computed for each combination of bicluster and
biological process GO term to determine if the discovered
biclusters are statistically significant. The p-value computed
for a pair of bicluster (denoted by b) and GO term (denoted
by t) denotes the random probability of annotating a biclus-
ter of size same as b with the same GO term t.
To compare error-tolerant biclusters and RAP biclusters in
an unbiased fashion, we used the same 2652 biological pro-
cesses GO terms (or classes), all of which contain at least
1 and at most 500 genes from S.cerevisiae. Furthermore,
as only 4684 genes are annotated with either one or more
of these 2652 classes, we restricted our analysis to a subset
of data sets comprising of 4684 genes × 501 conditions and
4684 genes × 300 conditions for mega yeast and Hughes’s
et al’s gene-expression data sets respectively.

3.1.1 Quantitative Analysis of Biclusters
Table 1 provides a general overview of all the biclusters ob-

tained by ET -bicluster and RAP algorithm on mega yeast
and Hughes et al’s real-valued gene-expression data sets us-
ing various parameter settings. Parameter controlling error-
tolerance (ǫ) was set to 0.25 in all the runs for ET -bicluster.
It is important to note that number of error-tolerant bi-
clusters is substantially larger than the number of RAP
biclusters. Therefore, for a specific range(α) value and

user-defined RangeSupport threshold, if ET -bicluster algo-
rithm was not able to finish in a reasonable amount of time
and memory with ǫ = 0.25, we first obtain exact biclusters
(no error-tolerance) by setting ǫ to 0 and then increase the
RangeSupport to obtain error-tolerant biclusters by setting
ǫ to 0.25. The final resulting set of biclusters is obtained by
merging these exact and error-tolerant biclusters. Following
are some of the general observations:

Number of Biclusters: It can be clearly seen from table
1 that introducing an error-tolerance of 25% substantially
increased the total number of biclusters. For example, num-
ber of total error-tolerant biclusters obtained on mega yeast
data is approximately 5-times (for α = 0.5) and 3-times
(for α = 0.3) the number of RAP biclusters for correspond-
ing α values. Similarly, for Hughes et al’s data set, num-
ber of error-tolerant biclusters is approximately 3-times the
number of RAP biclusters for both the α values considered
(α = 0.8 and α = 0.5).

Size of Biclusters: Another important observation one
can make from the results shown in table 1 is that the size of
error-tolerant biclusters is more than RAP biclusters. This
is expected as RAP can only find exact biclusters (with
no error-tolerance) and hence valid biclusters that are frag-
mented due to random noise and errors in the data, are ei-
ther found as separate biclusters or completely missed. On
the other hand, because ET -bicluster algorithm explicitly
handles noise and errors in the data, it can potentially find
larger biclusters by stitching together the fragmented parts
or can even find new biclusters that were missed by RAP .
This might have a significant impact on the functional en-
richment analysis as ET -bicluster algorithm can potentially
discover biclusters that have higher overlap with the consid-
ered GO biological processes classes. We discuss this further
in the next section.

Coverage of Genes and Relationships Among Them:
As can be noted from table 1, the number of genes covered by
ET -bicluster and RAP algorithm is same at least if we con-
sider all biclusters. This is because the starting set of genes
(‘singletons’) are same for both the algorithms. In fact, if the
error-tolerance, ǫ is 0.25 for example, then singletons, pairs
(level-2 bicluster) and even triplets (level-3 bicluster) will
be identical for ET -bicluster and RAP . However note that
the number of level-4 biclusters generated by ET -bicluster
is more than those generated by RAP . This is due to the
fact that ET -bicluster algorithm, owing to its relaxed error-
tolerance criterion, can generate more combinations of genes
than RAP . Therefore in other words, even if the total genes
covered by both the algorithms are same, ET -bicluster al-
gorithm can find more relationships among them.

As mentioned above and shown in table 1, since ET -bicluster
algorithm, as compared RAP , can potentially find newer
and larger biclusters and hence more relationships among
genes, an important question to address is: whether these
larger and new biclusters are biologically meaningful? One
promising way to answer this question is through functional
enrichment analysis and below we discuss these results.

3.1.2 Functional Enrichment using GO Biological Pro-
cesses

As mentioned earlier, a p-value for each of the (bicluster,
GO term) pair is computed for the selected top 500 biclus-
ters using the 2652 biological processes GO terms considered
in this study. To demonstrate how well error-tolerant and
RAP biclusters are enriched by GO terms, we show the dis-



Run ID Parameter Settings # total # genes # top # genes Size distribution2 Time
biclusters covered1 biclusters covered2 # of genes: taken

# of biclusters (seconds)

Error-tolerant Biclusters on Mega Yeast Data Set
ET -biclusterM1 α = 0.5, 153,960 361 500 295 2:128, 3:235, 4:8, 10,560

ǫ = 0 for RS ∈ [120 150), 5:76, 6:39, 7:7, 8:2,
ǫ = 0.25 for RS ≥ 150 9:1, 10:2, 11:1, 13:1

ET -biclusterM2 α = 0.3, 271,101 792 500 233 3:203, 4:28, 5:177, 33,000
ǫ = 0 for RS ∈ [60 90), 6:80, 7:5, 8:3,
ǫ = 0.25 for RS ≥ 90 9:3, 10:1

RAP Biclusters on Mega Yeast Data Set
RAPM1 α = 0.5, RS ≥ 120 33,330 361 500 247 2:68, 3:379, 4:33, 642

5:16, 6:4
RAPM2 α = 0.3, RS ≥ 60 94,806 792 500 241 3:384, 4:68, 5:43, 6:5 7,580

Error-tolerant Biclusters on Hughes et. al’s Data Set
ET -biclusterH1 α = 0.8, 150,372 506 496 437 2:210, 3:187, 4:12, 8,360

ǫ = 0 for RS ∈ [10 15), 5:66, 6:14, 7:3, 8:1,
ǫ = 0.25 for RS ≥ 15 10:1, 11:1, 13:1

ET -biclusterH2 α = 0.5, 234,761 1135 500 443 2:115, 3:258, 4:22, 21,745
ǫ = 0 for RS ∈ [6 10), 5:69, 6:24, 7:6, 8:1,
ǫ = 0.25 for RS ≥ 10 9:2, 11:1, 13:1, 14:1

RAP Biclusters on Hughes et. al’s Data Set
RAPH1 α = 0.8, RS ≥ 10 56,009 506 495 438 2:212, 3:207, 4:25, 5:40, 2,835

6:5, 7:3, 8:2, 11:1
RAPH2 α = 0.5, RS ≥ 6 80,335 1135 500 405 2:96, 3:303, 4:18, 5:75, 1,505

6:2, 7:2, 8:3, 12:1

Table 1: Statistics of biclusters obtained using ‘ET -bicluster’ and ‘RAP ’ from Mega Yeast and Hughes et al’s microarray

gene-expression data sets. (1all biclusters, 2top biclusters)

tribution of −log10(pvalue) and size of the biclusters. While
figures 2 (a) and (b) show this distribution for mega yeast
data set corresponding to two α values of 0.5 and 0.3, fig-
ures 2 (c) and (d) show this distribution for Hughes et al’s
data set corresponding to α values of 0.8 and 0.5 consid-
ered in this study. It can be seen from these plots that
ET -bicluster algorithm not only generates bigger biclusters
(in terms of number of genes in them) as discussed before,
but also these biclusters have high −log10(pvalue) (or low p-
value), which means it is highly unlikely to have discovered
these error-tolerant biclusters by random chance. Consider
mega yeast data for example, while ET -bicluster algorithm
can discover biclusters of sizes as big as 13 (for α = 0.5) and
10 (for α = 0.3), RAP algorithm can only discover biclusters
of maximum size 6. Moreover, enrichment scores of these
larger error-tolerant biclusters (computed using the mini-
mum p-value estimated for these biclusters for 2652 classes)
are reasonably high. Therefore, even if the number of unique
genes covered and number of enriched GO terms are com-
parable for ET -bicluster and RAP algorithm, the degree
to which error-tolerant biclusters enrich the GO terms is
certainly higher. In other words, ET -bicluster algorithm
can find more relationships among the genes covered and as
shown by functional enrichment analysis, these relationships
indeed seem to be biologically relevant and not spurious.

Further, considering various p-value thresholds (from loose –
5×10−2 to strict – 1×10−5), we collected two more statistics.
First, the fraction of biclusters that are enriched by at least
one GO term, and second, the fraction of GO terms that
enriched at least one bicluster. To illustrate the efficacy of
ET -bicluster in capturing the functional coherence among
genes, and comparing it with RAP , the above two statistics
are collected for all the runs shown in table 1. For instance,
if we compare these statistics for mega yeast data, while
83% of the top 500 error-tolerant biclusters (corresponding
to Run ID ET -biclusterM2) were enriched, only 76% of the
top 500 RAP biclusters (corresponding to Run ID RAPM2)
were enriched by at least one GO term at a reasonable p-
value threshold of 1×10−3, a gain of 7%. At even more strict

p-value threshold of 1×10−5, the gain is 11%. Similarly, for
Hughes et al’s data set, though the gain is not significant,
biclusters obtained from ET -bicluster still outperform those
obtained by RAP in terms of the fraction of biclusters en-
riched. As far as the second statistics is concerned i.e. the
number of GO terms that enriched at least one bicluster,
performance of ET -bicluster and RAP is comparable, how-
ever, as shown in −log10(pvalue) vs. size distribution plots,
enrichment scores for error-tolerant biclusters are generally
higher than RAP biclusters.

3.1.3 Statistical Significance of Error-tolerant Biclus-
ters Using Randomization Tests

Motivated by the discussion of randomizaton tests and
their importance in validating the results from any data
mining approach [17], we further estimate the statistical sig-
nificance of the error-tolerant biclusters using a data centric
randomization approach. More specifically, an empirical p-
value is computed for all the error-tolerant biclusters using
the two randomization tests.

In the first randomization test, conserving the size of the top
500 error-tolerant biclusters, we generated 1000 random sets
of 500 biclusters each and evaluated them by the same func-
tional enrichment analysis using GO biological processes. So
effectively, for each actual error-tolerant bicluster, we gen-
erated 1000 random biclusters of the same size (in terms
of number of genes). The empirical p-value for each ac-
tual error-tolerant bicluster is then computed as the fraction
of random biclusters (out of total 1000) whose enrichment
score (−log10(pvalue)) exceeds the enrichment score of the
actual error-tolerant bicluster. For instance, if for a error-
tolerant bicluster, only 1 out of 1000 random biclusters has
higher enrichment score than it’s actual value, empirical p-
value of this error-tolerant bicluster is given as ‘1 in 1000’
or 10−3. Figure 3 shows the (−log10(empirical p-values))
for all the error-tolerant biclusters that were shown in fig-
ure 2. To plot these values at the same scale, an empiri-
cal p-value of ‘0 in 1000’ is set to 10−5 to ensure that they
stand out from the rest. Therefore, all the biclusters showing
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Figure 2: Bicluster Size vs Enrichment Scores (Computed using Biological Processes) for Mega Yeast and
Hughes et al’s data sets

(−log10(empirical p-values)) as 5 in figure 3 correspond to
empirical p-value of ‘0 in 1000’. It can be clearly seen from
figure 3 that error-tolerant biclusters that were assigned high
enrichment scores from the GO-based evaluation also have
high (−log10(empirical p-values)). This means higher the
enrichment score of a bicluster, less likely it is to obtain this
by random chance, which further illustrates that the bigger
error-tolerant biclusters discovered by only ET -bicluster al-
gorithm but not by RAP algorithm are indeed statistically
significant.

We also showed in table 2, the summary statistics of the
evaluation results on 1000 randomly generated sets of bi-
clusters. More specifically, for a given p-value threshold, we
first compute for each of the 1000 random runs, the frac-
tion of biclusters that have a p-value better than the given
threshold and then we report how many times it exceeds
the same fraction computed for the actual set of biclusters.
It can be clearly seen from the table that specially for a
stricter p-value threshold, none of the randomly generated
biclusters are better than the actual biclusters. For instance,
while 83% of the actual 500 biclusters on mega yeast data
(‘Run ID: ET -biclusterM2’) had −log10(pvalue) higher than
3, this percentage for 1000 random runs was substantially
lower with mean of around 36% and a maximum of only

42%. The results were very similar for Hughes et al’s data
set. Both these set of results further confirms the statistical
significance of biclusters obtained from ET -bicluster algo-
rithm.

In the second randomization test, we randomized the data
itself by shuffling the data values among the conditions for
each gene. By doing this, we conserved the distribution
of each gene profile but broke the correlation among them.
We ran our proposed ET -bicluster algorithm on random-
ized mega yeast data set for example, and obtained only 42
biclusters, all of which were pairs. In contrast, application
of ET -bicluster algorithm on actual non-randomized mega
yeast data generated many more biclusters and of size as big
as 10.

Both of the above randomization tests suggest that the error-
tolerant biclusters obtained from the real-valued gene-expression
data sets were indeed biologically meaningful and are nei-
ther obtained by random chance nor capture any random
structure in the data.

3.2 Case Study 2 - Discovery of Biomarkers
We used four real-valued Breast Cancer gene-expression

data sets, all of which were taken from Affymetrix platform
HGU133A and normalized using RMA-normalization ap-
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Figure 3: Biological and Empirical p-value (using 1000 random runs) of the Biclusters Obtained from ET -
bicluster Algorithm [figure best viewed in color].

Run ID # of random runs out of 1000
in which fraction of biclusters enriched
exceeds the fraction for the true run

pval ≤ pval ≤ pval ≤ pval ≤ pval ≤
0.05 0.01 0.005 0.001 0.00001

ET -biclusterM1 660 33 0 0 0
ET -biclusterM2 660 76 4 0 0
ET -biclusterH1 797 0 0 0 0
ET -biclusterH2 886 0 0 0 0

Table 2: Statistical Significance of Biclusters Obtained

from ET -bicluster

proach. Please note that these gene-expression data sets are
different than those considered for functional module discov-
ery problem, in the sense that experimental conditions are
replaced by two groups of patients. All the four breast can-
cer data sets were downloaded from GEO website: Desmedt
(GSE7390), Loi (GSE6532), Miller (GSE3494) and Pawitan
(GSE1456). The patients in the four data sets are classified
as cases and controls based on their metastasis state. The
patients who developed metastasis within 5 years of prog-
nosis were considered as metastasis cases. The patients who
were free of metastasis longer than 8 years of survival and
follow-up time were considered as controls. The case-control
ratio for Desmedt, Loi, Miller and Pawitan data set was
35:136, 51:112, 37:150 and 35:35 respectively. To increase
the samle size, we combined these four data sets and used
it for the discovery of biomarkers. This combined data set
comprises of 8,920 genes and a case-control ratio of 158:433.

We discovered biclusters on combined Breast Cancer gene-
expression data set using ET -bicluster with parameters,
α = 0.5, RS = 80, and ǫ = 0.25.

Selecting disriminative biclusters First we select top bi-
clusters using the approach defined earlier and then amongst
the top biclusters, only those are selected as biomarkers that
are discriminative of the two groups of patients, cases and
controls. To measure the discriminative power, we used two
measures, odds ratio and p-value. While odds ratio quan-
tifies how different are cases and controls for a specific bi-
cluster, p-value quantifies the significance of the difference
reflected by odds ratio. Only those biclusters are selected
that have a p-value of less than 0.05 and odds ratio of more
than 2.0 (biclusters more represented in cases) or less than
0.5 (biclusters more represented in controls).

Functional Enrichment Analysis We evaluated all the
identified biomarkers in terms of their enrichment scores us-
ing the MSigDB gene sets [31]. A p-value using a hyperge-
ometric probability distribution, which denotes the random
probability of annotating a biomarker with the gene set con-
sidered, is computed for all pair combinations of biomark-
ers and 5452 gene sets from MSigDB database. Enrich-
ment score of each biomarker is then computed as −log10(p-
valuemin) and used as a metric to compare the biomarkers
obtained using ET -bicluster and RAP .

3.2.1 Enrichment Analysis Using MSigDB Gene Sets
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Figure 4: (a) Fraction of Biomarkers Enriched by
at least One Gene Set, (b) Fraction of Gene Sets
Enriched by at least One Biomarker

Considering various p-value thresholds (from 10−6 to 10−14),
figure 4 shows two statistics: (a) fraction of biomarkers en-
riched by at least one gene set, and (b) fraction of gene
sets that enriched at least one biomarker. These two statis-
tics are collected both for biomarkers obtained from ET -
bicluster and RAP algorithm at various p-value thresholds.
As mentioned earlier, biomarkers obtained by ET -bicluster
are not only bigger than those obtained by RAP , as illus-
trated in figure 4(a), even a higher fraction of them is en-
riched by at least one gene set. Consider for instance, a
strict p-value threshold of 10−8 (corresponding to −log10(p-
value) of 8 as shown on the x-axis), while 10.5% of the error-
tolerant biomarkers are enriched, only 1.5% of the RAP
biomarkers are enriched.

Now refer to figure 4(b), gene sets covered by ET -bicluster
biomarkers are more than those covered by RAP biomark-
ers. The fraction of gene sets covered by biomarkers ob-
tained from both the algorithms seems very low but this is
expected because first a large number of gene sets are con-
sidered for the analysis and second, these biomarkers are
only reflective of breast cancer metastasis. An important
point to note however is that even a small change in frac-
tion of gene sets covered would mean covering substantially
large number of gene sets. For instance, consider a p-value
threshold of 10−6 (corresponding to −log10(p-value) of 6 as
shown on the x-axis), ET -bicluster and RAP biomarkers
cover 3.03% (165 gene sets) and 1.96% (107 gene sets) re-
spectively. These numbers for a even stricter p-value thresh-
old of 10−8 are 1.01% (55 gene sets) 0.26% (14 gene sets)
respectively.

It is clear that the biomarkers obtained from ET -bicluster
algorithm are indeed biologically meaningful and because
RAP algorithm does not explicitly handle noise in the data,
it either completely miss some of these biologically relevant
biomarkers or find fragmented parts of these, which eventu-
ally affect their enrichment score.

4. CONCLUSIONS
We proposed a novel error-tolerant biclustering model and

presented an heuristic-based algorithm ‘ET -bicluster’ to se-

quentially generate error-tolerant biclusters from real-valued
gene-expression data in a bottom-up fashion.
We presented two biological case studies, functional module
discovery and biomarker discovery, to demonstrate the im-
portance of incorporating noise and errors in the data for dis-
covering coherent groups of genes. In both the case studies,
we found that the biclusters discovered using our proposed
ET -bicluster algorithm are not only bigger than those ob-
tained by RAP algorithm, they were also assigned a higher
functional enrichment score using the biological processes
GO terms and MSigDB gene sets. These results suggest that
the discovered error-tolerant biclusters, not only capture the
functional coherence among the genes, it is unlikely to have
obtained them by random chance. We further demonstrated
that the statistical significance of error-tolerant biclusters is
high by computing their empirical p-value using the two
randomization tests. The results from both randomization
tests (one randomly selects the biclusters and other ran-
domizes the input data itself) suggest the robustness of our
proposed approach and clearly illustrate that discovered bi-
clusters were indeed biologically and statistically meaningful
and neither obtained by random chance nor capturing any
random structure in the data.

5. LIMITATIONS AND FUTURE WORK
The work presented in this study has several limitations

and can be extended in various ways. Below we discuss some
of the limitations of the ET -bicluster algorithm and possible
ideas to address them.

• Since the range criterion that is used to check the co-
herence of expression values is not anti-monotonic, the
proposed ET -bicluster approach does not exhaustively
search for all error-tolerant biclusters. Therefore, a
promising idea is to define a new anti-monotonic mea-
sure that measures the coherence among the expression
values and enable exhaustive search for error-tolerant
biclusters.

• The current implementation of ET -bicluster algorithm
only impose error-tolerance constraints in the bicluster
row. This means that it is possible for a gene in a dis-
covered bicluster to have all error values. To avoid this
situation, one can use additional column constraint
and find a subset of supporting transactions for which
each column in the pattern has no more than some
user-defined fraction of errors. For binary data case,
this kind of additional column constraint has been used
in [20], however, a heuristic-based approach is used to
check the column constraint. One potential way to
address this is to develop a pattern mining algorithm
that checks both the row and column error-tolerance
constraints, and exhaustively search for all the error-
tolerant biclusters.

• As the error-tolerant pattern mining is computation-
ally more challenging, more efficient data structures
and memory management techniques can be used. This
would enhance the scalability of the algorithm and en-
able the discovery of biclusters on a wider range of
parameter settings.

We only presented comparison of ET -bicluster and RAP
since comparison with other biclustering approaches such as
CC and ISA is not well suited for quantifying the affect of
noise/errors. Moreover CC and ISA approaches generally
finds larger biclusters and follow a different approach based
on optimizing an objective function. Nevertheless, it will
still be interesting in future to compare ET -bicluster with
CC and ISA for potential complementarity among them.



It is also important to note that gene-expression data
provides useful but limited view of the genome and there-
fore biclusters obtained from gene-expression data alone may
not elucidate the complete underlying biological mechanism.
Hence another promising research direction is to integrate
multiple biological data sources for complex problems like
discovery of functional modules or biomarkers. For exam-
ple, protein-protein interaction data can be used as a prior
knowledge to guide the discovery of biclusters from the gene-
expression data. The biclusters identified in this way are po-
tentially more reliable and biologically plausible than those
obtained from individual data sources. We are currently de-
veloping error-tolerant pattern mining based approaches for
integrated analysis of gene-expression and protein-protein
interaction data. One such application for discovering sub-
network based biomarkers for Breast cancer metastasis has
been shown in [15], however, these approaches are primitive
at this stage and further work is needed in this area.
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