
Integrative Biomarker Discovery for Breast Cancer Metastasis from Gene
Expression and Protein Interaction Data Using Error-tolerant Pattern Mining

Rohit Gupta∗ Smita Agrawal+ Navneet Rao∗ Ze Tian∗

rohit@cs.umn.edu agraw034@umn.edu nrao@cs.umn.edu tianze@cs.umn.edu

Rui Kuang∗ Vipin Kumar∗

kuang@cs.umn.edu kumar@cs.umn.edu

∗ Computer Science, University of Minnesota - Twin Cities, Minneapolis, MN 55455
+ Lab Medicine & Pathology, University of Minnesota - Twin Cities, Minneapolis, MN 55455

Abstract
Biomarker discovery for complex diseases is a chal-

lenging problem. Most of the existing approaches identify
individual genes as disease markers, thereby missing the
interactions among genes. Moreover, often only single bi-
ological data source is used to discover biomarkers. These
factors account for the discovery of inconsistent biomark-
ers. In this paper, we propose a novel error-tolerant pattern
mining approach for integrated analysis of gene expression
and protein interaction data. This integrated approach in-
corporates constraints from protein interaction network and
efficiently discovers patterns (groups of genes) in a bottom-
up fashion from the gene-expression data. We call these
patterns active sub-network biomarkers. To illustrate the
efficacy of our proposed approach, we used four breast can-
cer gene expression data sets and a human protein interac-
tion network and showed that active sub-network biomark-
ers are more biologically plausible and genes discovered
are more reproducible across studies. Finally, through path-
way analysis, we also showed a substantial enrichment for
known cancer genes and hence were able to generate rel-
evant hypotheses for understanding the molecular mecha-
nisms of breast cancer metastasis.

1 Introduction

Most of the complex problems like biomarker discov-
ery require more information than provided by any individ-
ual biological data. For example, since both gene expres-
sion data and protein interaction data are noisy, biomark-
ers identified using information from both gene expression
and protein interaction data are more reliable and biolog-
ically plausible than those obtained from individual data
sources. This is because a set of genes that coexpress as
well as physically interact with each other is more likely to
be significant and biologically relevant. However, most of
the previous studies rely on single biological data, for ex-
ample, gene expression or protein interaction data to find

disease biomarkers. Another issue is that most approaches
identify individual genes as disease markers through analy-
sis of genome-wide expression profiles [1, 7] and therefore
ignore the interactions among them.

There are several problems with both, individual
gene-based biomarkers and group of genes as biomarkers
obtained from a single biological data source: 1) Poor re-
producibility - no or very little overlap among biomark-
ers across various studies. For example, for the problem
of breast cancer metastasis, Van de veer et al [32] identi-
fied 70 gene signatures and Wang et al [33] identified 76
gene signatures, however surprisingly, only 3 overlap; 2)
Poor interpretability - difficult to understand the underly-
ing mechanism of a gene signature when genes have either
unknown functions or may be associated with unrelated bi-
ological pathways; 3) Poor coverage - some of the relevant
genes can be missed in differential analysis. For example,
in the breast cancer case, known cancer genes, such as P53,
KRAS, etc, may not be detected [3]; 4) Poor predictive ca-
pability - biomarkers identified using single biological in-
formation tend to have inferior predictive power [3, 16].

To address some of the limitations mentioned above,
a number of studies have been proposed that use multiple
sources of information [2, 5, 11, 12, 14, 19, 20, 25, 27,
29, 30, 31, 34, 35]. There are several pathway based ap-
proaches [21, 22, 26, 28] that score pathways by observ-
ing the coherency of the gene expression values among the
pathway genes. However, these approaches are limited be-
cause a majority of genes have not yet been assigned to a
pathway. Moreover, not all genes in a pathway may be re-
sponsive for the phenotype under study [16]. Another set
of approaches use a complete protein interaction network
and try to extract relevant subnetworks based on coher-
ent expression patterns of their genes. One of the promis-
ing works [3] in this category uses a greedy algorithm and
starts from a random gene to find sub-networks whose con-
stituent genes co-express with each other. Although this is a
promising approach, first of all, since it employs heuristic-
based greedy algorithm, it cannot guarantee completeness.



Second, this approach does not explicitly handle noise and
errors in the data. Another interesting study [6] integrates
gene expression and protein interaction data to enumerate
dense modules with the provision of integrating additional
constraints from a variety of data sets. This approach is pri-
marily designed for finding protein complexes from protein
interaction data. Hence, first of all, it is not directly applica-
ble to case-control type of data and secondly, it is sensitive
to noise in the gene expression data and protein interaction
network as it only looks for dense modules.

To address the above issues, building on our recent
work [9], we propose a systematic error-tolerant pattern
mining based approach, which sequentially generates in a
bottom-up fashion patterns that satisfy the user constraints.
The application of error-tolerant pattern mining for discov-
ering biomarkers from multiple biological data sources is
a novel framework and to the best of our knowledge, has
not been explored before. Unlike traditional association
mining algorithms, this approach directly works on real-
valued attributes and does not require binarization of the
gene expression data, which results in loss of information.
Moreover, it directly accounts for errors/noise in the data
and discovers patterns with user-defined error tolerance. In
addition, we used an anti-monotonic measure diameter de-
fined on protein interaction network to find patterns (groups
of genes) that not only show coherent expression values but
whose constituent set of genes are connected in the protein
interaction network. We call these resultant patterns ac-
tive sub-network biomarkers as the constituent genes are
discriminative of the two groups of samples; are over- or
under-expressed for at least some of the samples; and in-
duce a sufficiently connected subgraph in the protein inter-
action network. For this reason, we will use patterns and
active sub-network biomarkers interchangeably in the rest
of the paper.

To illustrate the efficacy of our proposed pattern min-
ing based approach, we used four case-control breast can-
cer gene-expression data sets and a human protein inter-
action network. An integrated analysis is performed to
discover active sub-network biomarkers for breast cancer
metastasis. We showed that the genes discovered as part of
the biomarkers are not only more reproducible across data
sets, these biomarkers themselves are enriched for many
known gene sets obtained from MSigDB [26]. We also per-
formed pathway analysis (using IPA software) on the iden-
tified genes and showed a substantial enrichment for known
cancer genes. In addition, we were able to generate relevant
hypotheses for understanding the molecular mechanisms of
breast cancer metastasis. Overall, the results presented in
this study strongly suggest that our proposed error-tolerant
pattern mining approach is a potential integrative method
to discover active sub-network biomarkers.

1.1 Contributions

Following are the key contributions of the paper:
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Figure 1: Schematic overview and illustrative example for active
sub-network biomarker discovery

• Systematic bottom-up pattern mining approach to dis-
cover patterns or active sub-network biomarkers that
satisfy the user-specified criteria.

• Demonstration of the reproducibility of genes discov-
ered as part of biomarkers across four breast cancer
data sets.

• Comprehensive biological evaluation of the dis-
covered patterns using MSigDB-based enrichment
analysis and of the discovered genes using path-
way/network analysis (IPA software). Also, some
relevant hypotheses for understanding the molecular
mechanisms underlying breast cancer metastasis were
generated.

2 Active Sub-network Biomarker Discovery

We recently proposed a pattern mining approach
to discover constant rows/columns error-tolerant patterns
from a real-valued gene expression data [9]. The input
to this algorithm includes the gene expression data and
various user-defined parameters such as range (measures
the coherence of expression values), SampleSupport (min-
imum number of samples supporting the pattern), Range-
Support (measures the contribution of samples toward a
particular pattern), row and column error-tolerances (max-
imum number of errors allowed in the pattern). The out-
put of this algorithm is the set of patterns (groups of genes
and their supporting samples) that satisfy the above user-
defined constraints. The genes in each pattern are expected
to co-express for the samples supporting the pattern. We
show in figure 1, three examples of error-tolerant patterns,
namely A, B and C. Please note that pattern A has one
error in each row 1 and 3, while patterns B and C have
no error values. This approach has several advantages over
biclustering approaches (refer to [17, 23] for survey) and



other previously published error-tolerant pattern mining ap-
proaches (refer to [8] for survey). First, this approach di-
rectly works on the real-valued attributes and hence elim-
inates the need to binarize the data, which often results in
the loss of information. Second, it tolerates errors in the
patterns, which is crucial in order to discover true under-
lying patterns that are fragmented due to noise/errors in
the data. Finally, it provides a natural framework for in-
tegrating other data sources as anti-monotonic constraints
and therefore as a result produces patterns that are inferred
from multiple data sources.

In this paper, we extended the above error-tolerant
pattern mining approach for an integrated analysis of gene
expression data and protein interaction network. One of
the strategies to perform such an analysis is to derive an
anti-monotonic measure on protein interaction network and
incorporate it in the pattern mining process on the gene-
expression data. For this, we defined a measure called ‘di-
ameter’, which for any sub-network is defined as the max-
imum of the shortest pair-wise distances of all the con-
stituent proteins computed using the complete graph. As
can be observed, this measure is anti-monotonic as it can
only increase on the addition of any protein to the sub-
network. For integrated analysis, we imposed this con-
straint in addition to the ones used for the analysis of gene-
expression data alone and obtained patterns, i.e. groups of
genes that not only co-express but their proteins interact as
well. Consider for example figure 1. Although patterns A,
B and C are all valid error-tolerant patterns, pattern A has
a diameter of 3 and pattern B has a diameter of 5 and hence
for a diameter threshold of 3, pattern B will be pruned. Fi-
nally, to discover biomarkers, using the case-control class
label, we only select those patterns that have a p-value less
than 0.05 and odds ratio of more than 2.0 (pattern more
represented in cases) or less than 0.5 (pattern more repre-
sented in controls). For example in 1, pattern C will be
discarded in this step even though it may be a valid error-
tolerant pattern. This is because it occurs equally in both
cases and controls and hence is not discriminative.

3 Results and Discussion

In this section, we present our experimental method-
ology and results to demonstrate the efficacy of our pro-
posed approach in discovering statistically significant and
biologically meaningful disease markers from an integrated
analysis of gene-expression and protein interaction data.

3.1 Data sets and pre-processing

We used four breast cancer gene-expression data
sets, all of which were taken from Affymetrix platform
HGU133A. In addition, we used human protein inter-
action network [3], which comprises of 57, 235 interac-
tions among 11, 203 proteins. All the four breast cancer

data sets were downloaded from GEO website: Desmedt
(GSE7390), Loi (GSE6532), Miller (GSE3494) and Paw-
itan (GSE1456). There were a total of 22, 283 probe sets
and after removing the ones that have no associated gene
symbol or more than one associated gene symbols, we
grouped the probe sets with the same gene symbol and
ended up with 12, 733 unique genes. The expression value
of each gene is computed by taking the average of the cor-
responding probe sets. Furthermore, only 8, 920 of the
12, 733 genes that can be mapped to the protein interac-
tion network were considered for final analysis. All the
four resulting gene expression data sets were finally nor-
malized using RMA-normalization approach. The patient
samples in the four datasets are classified as cases and con-
trols based on their metastasis state. The patients who de-
veloped metastasis within 5 years of prognosis were con-
sidered as metastasis cases. The patients who were free
of metastasis longer than 8 years of survival and follow-up
time were considered as controls. The case-control ratio
for Desmedt, Loi, Miller and Pawitan data set was 35:136,
51:112, 37:150 and 35:35 respectively.

3.2 Active sub-network biomarkers are enriched
based on MSigDB gene sets

In the first experiment, to increase the sample size, we
combined all the four breast cancer gene-expression data
sets and discovered active sub-network biomarkers on the
combined data (we refer to it as DLMP data) using our pro-
posed pattern mining based approach. A total of 1, 777
patterns (active sub-network biomarkers) were identified,
with pattern sizes (number of genes in them) as large as 8.
Please note we used a diameter threshold of 3 and error-
tolerances (both row and column) of 0.25 for this experi-
ment. Since the discovered patterns essentially represent
groups of genes, we evaluated them using the enrichment
analysis based on gene sets obtained from Molecular Sig-
nature Database (MSigDB) [26]. This entails finding a p-
value for each (pattern, MSigDB gene set) pair, which de-
termines the statistical significance of the discovered pat-
terns. Enrichment score for each pattern is then computed
as log10(p-valuemin). Similarly, enrichment score for each
MSigDB gene set is computed. Figure 2 shows the odds ra-
tio (shown on the y-axis), support (number of samples sup-
porting the pattern shown on the x-axis), enrichment score
based on MSigDB (shown as marker color) and pattern size
(shown as marker size) of all the 1, 777 patterns. It can be
observed that some of the big patterns (6 or 7 constituent
genes) have enrichment scores as high as 9 and odds ratio
above 2 indicating over- or under-expression of constituent
genes in cases. Similarly, some patterns have enrichment
scores as high as 15 and odds ratio below 0.5 indicating
over- or under-expression of constituent genes in controls.
Moreover, to give an overall statistics, 87.67%, 74.17%
and 54.36% of the patterns were enriched with at least one
MSigDB gene set when p-value thresholds of 1e−3, 1e−4
and 1e − 5 were used respectively. For the same pvalue



Figure 2: (Best viewed in color) Active sub-network biomarkers obtained from combined DLMP data. (Marker color indicates the enrich-
ment score and marker size indicates the size of the pattern).

thresholds, 12.87%, 7.3% and 3.18% gene sets enriched
at least one pattern. It is noteworthy that most of these
gene sets were manually curated from various sources such
as online pathway databases, publications in PubMed, and
knowledge of domain experts that includes many cancer re-
lated gene sets.

3.3 Increased reproducibility of genes identified
from active sub-network biomarkers across
data sets

Next, we examined the agreement in the genes identi-
fied from four different data sets using our proposed pattern
mining approach. To do this, using the same ‘diameter’ and
error-tolerance parameters as used in the previous experi-
ment, we applied our approach to discover all patterns or
active sub-network biomarkers from each of the four breast
cancer data sets. Please note that same protein interaction
network was used in each case and only those patterns were
considered whose odds ratio were either less than 0.5 (more
represented in controls) or greater than 2 (more represented
in cases) with a p-value less than 0.05. We identified a total
of 6, 266 (covering 199 genes), 580 (covering 166 genes),
1, 711 (covering 157 genes) and 111 (covering 82 genes)
active sub-network biomarkers from Desmedt, Loi, Miller
and Pawitan data respectively. The odds ratio, support, p-
value (shown as marker color) and size (shown as marker
size) of these patterns is shown in figure 3 for each of the
data sets. Overall, 274 unique genes were identified from

these 4 independent analyses and interestingly, 52 of these
genes were identified from all the four data sets, 56 were
identified from three, 62 were identified from two, and fi-
nally 104 genes were identified from only one of the four
data sets.

On the other hand, if we select individual marker
genes from these four data sets separately using the same
odds ratio and p-value thresholds and without incorporat-
ing protein interaction network information, only 46 unique
genes were identified. It is noteworthy that out of these,
only 1 gene was identified from two data sets while oth-
ers were identified from only one of the four data sets.
These results suggest that individual genes have very lim-
ited information and finding groups of genes as biomark-
ers while incorporating protein interaction network infor-
mation yields more consistent and meaningful results.

One question that may arise is: whether this increased
overlap among the genes is due to the network bias? There
are several ways to answer this question. First, random
sub-networks, equal in number and size of the discovered
active sub-network biomarkers, can be extracted from the
protein interaction data and then overlap among them can
be observed. Another possible way is to use the same pro-
tein interaction network as prior biological knowledge but
randomize the gene expression data. The application of
the proposed integrated approach on this expression data
should hypothetically produce biomarkers without signif-
icant overlap. Finally, one can also evaluate the biolog-
ical significance of the discovered genes with respect to



Figure 3: (Best viewed in color) Active sub-network biomarkers obtained from four breast cancer data sets. (Marker color indicates the
empirical p-value and marker size indicates the size of the pattern).

the phenotype of interest and it is likely that overlapping
genes that also show relevant biological associations with
the phenotype are not obtained due to network bias. Due to
space limitations, we only show the biological relevance of
the discovered genes. Although, using the randomization
test explained as the first strategy above, it was shown in [3]
that the increased overlap in sub-network based biomarkers
is not due to the network bias.

3.4 Biological relevance of discovered genes

Using the IPA (Ingenuity Pathway Analysis) soft-
ware, we assessed the biological relevance of the 274
unique genes contained in active sub-network biomarkers
discovered from the four breast cancer data sets. The top
molecular and cellular functions of these genes included
cellular movement, cell death, cell growth and prolifera-
tion, cell-to-cell signaling interactions and cellular assem-
bly and organization, all of which are processes implicated
in the progression of cancer [10]. Cancer stood out as the
top biological function/disease enriched, with as many as
172 out of the 274 genes implicated. Out of these, 56 genes
were specific to various aspects of breast cancer including
proliferation, apoptosis, invasion, migration, survival etc.

The top network obtained as shown in figure 4 is as-
sociated with cancer and genetic disorders. Most of the
genes shown in this network are contained in our discov-
ered active sub-network biomarkers. In fact, many genes
were common in active sub-network biomarkers that were

obtained from multiple data sets (shown as dark red colored
nodes in the figure). One of the key genes in the network,
ERBB2 (a cell surface receptor), is a known breast can-
cer gene [15] and its over-expression / amplification has
been correlated with an aggressive spread of cancer [24].
Notably, three different collagen genes (Col5A1, Col6A3
and Col1A1) and several other extracellular matrix (ECM)
signaling genes are associated with ERBB2 in this net-
work. Previous studies have suggested that the interaction
between cell surface proteins on breast cancer cells with
ECM components plays an important role in breakdown of
the ECM leading to metastasis of cancer cells [4]. Taken
together, this suggests that the network components sur-
rounding ERBB2 discovered as part of our active sub-
network biomarkers may be potential target genes involved
in breast cancer metastasis and should be further studied.

Interestingly, through this network analysis, we iden-
tify hCG (human chorionic gonadotropin) and FSH (Fol-
licle Stimulating Hormone) as potentially important genes
by virtue of the fact that all the genes surrounding them
in this network are contained in the identified active sub-
network biomarkers. The presence of elevated levels of
hCG during pregnancy has recently been linked to a pro-
tective effect against breast cancer [13]. Thus, studying the
role of FSH , another fertility hormone, in breast cancer
spread and progression may be important.

Additionally, several other networks involved in can-
cer were identified. Notably, another top network (fig-
ure not shown) contains TP53 (a known cancer gene) and



Figure 4: Top biological network obtained through analysis of
274 unique genes. Color shade indicates the number of data sets
from which patterns containing that gene were obtained. (Dark
red genes were obtained from all 4 data sets, whereas light pink
genes were obtained from a single data set).

LGALS3 (a galactose-specific lectin important in ECM in-
teractions). LGALS3 has been implicated in tumor pro-
gression and its expression has been shown to be upregu-
lated in breast cancer and metastatic tissue relative to nor-
mal breast tissue [18].

4 Conclusions

We proposed a novel error-tolerant pattern mining ap-
proach for the integrated analysis of gene expression data
and protein interaction network in order to efficiently dis-
cover all active sub-network biomarkers of breast cancer
metastasis. Through experiments on four real breast can-
cer data sets, we showed that this proposed approach has
potential as it not only produces consistent biomarkers but
those biomarkers are significantly enriched for MSigDB
gene sets. Compared to individual gene markers, we
showed that our active sub-network biomarkers discov-
ered by integrated analysis are more biologically plausible,
more reproducible, and finally more likely to be true than
random.

Finally the work presented in this paper can be ex-
tended in several ways. In the future, we would like to test
the efficacy of active sub-network biomarkers for the classi-
fication task. We also plan to apply the proposed approach
to several other domains including lung cancer and prostate
cancer.
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