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Abstract

Mining patterns from electronic health-care records (EHR)

can potentially lead to better and more cost-effective treat-

ments. We aim to find the groups of ICD-9 diagnosis codes

from EHRs that can predict the improvement of urinary in-

continence of home health care (HHC) patients and also are

interpretable to domain experts. In this paper, we propose

two approaches for increasing the interpretability of the ob-

tained groups of ICD-9 codes. First, we incorporate prior

information available from clinical domain knowledge using

the clinical classification system (CCS). Second, we incorpo-

rate additional types of clinical information for the same pa-

tients, such as demographic, behavioral, physiological, and

psycho-social variables available from survey questions dur-

ing the hospital visits. Finally, we develop a hybrid frame-

work that can combine both prior information and the data-

driven clinical information in the predictive model frame-

work. Our results obtained from a large-scale EHR data

set show that the hybrid framework enhances clinical inter-

pretability as compared to the baseline model obtained from

ICD-9 codes only, while achieving almost the same predictive

capability.

1 Introduction

Health-care costs in the US are becoming unsustainable,
reaching 18% of the gross domestic product (GDP) in
2011 and headed for 20% by 2020 [9]. The terabytes or
even petabytes of health data available in EHRs present
new opportunities and challenges for research that aims
to effectively use these data to discover new knowledge
to improve health-care. For example, half of the waste
in health care spending (up to $425 billion) has been
attributed to a failure of appropriate care delivery, a lack
of coordination between different health care plans, and
over-treatment [4, 15]. Mining significant patterns from
EHRs can help elucidate such knowledge for potential
new care plans and enable more coordination between
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different health care plans.
We collected a large set of EHRs from 581 home

healthcare (HHC) agenies for 270,068 patients. In par-
ticular, our data contains the diagnosis (ICD-9) codes
during patients’ admission into HHC. After admission,
the patients received several nursing interventions de-
signed to improve their health status. However, all pa-
tients are not equally likely to improve in their health
status. For example, patients with poor memory are less
likely to improve with respect to urinary incontinence.
In general, the nursing interventions are designed mostly
based on patients’ initial health condition during their
admission in the homecare agency. However, the origi-
nal ICD-9 diagnosis codes for which they were admitted
in the HHC at first can help to stratify patient groups
for more customized homecare interventions and thus,
an increased likelihood of improved health status. Find-
ing the important groups of ICD-9 codes is also valuable
for enhancing the interpretability of the final models. In
this paper, we aim to find the ICD-9 groups that help
in improving the health status as measured by urinary
incontinence.

Unlike conventional predictive models which mainly
focus on improving the predictive power of a target vari-
able such as urinary incontinence, we are primarily in-
terested in finding interpretable risk factors which can
be used by the domain expert for further clinical pur-
poses. Moreover, most classification approaches provide
only one final set of biomarkers that are applicable for
the overall population. Instead, we are interested in
finding relatively homogeneous groups of ICD-9 diag-
nosis codes that are targeted to specific, homogeneous
sub-populations. Indeed, this is the main goal of the pa-
per. For example, Table 1 shows two groups of ICD-9
codes. The first group is more interpretable since they
are more related and represent the patient group with
diabetes and dementia. On the other hand, the second
group of ICD-9 codes is not clinically interpretable, al-
though they can be more predictive than the first group.

To find such homogeneous predictive groups of ICD-
9 codes, we explored two distinct approaches: data-
driven and prior knowledge driven. The data-driven
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Group1 ICD-9 Group1 survey features Group2 ICD-9 Group2 survey features
250.61 Diabetes with neurological manifestation 401.1 Benign hypertension
294.20 Dementia 817 Multiple fractures of hand bones
272.4 hyperlipidemia 692.71 Sunburn

Table 1: Two groups of ICD-9 codes

models incorporate various clinical information such
as demographic, behavioral, physiological, and psycho-
social factors which were collected as survey question
during patient’s admission in homecare agencies. The
goal of using such survey data is that the auxiliary in-
formation collected for same patient will provide more
natural groupings of ICD-9 codes. On the other hand,
clinical classification software (CCS) provides system-
atic grouping of ICD-9 codes into a hierarchical tree
structure by prior knowledge. We tried to incorporate
such prior knowledge into the predictive models.

However, taking such diverse datasets into account
creates a number of computational challenges. First,
the three datasets (ICD-9 codes, survey questions, CCS
prior knowledge) vary in terms of their innate proper-
ties such as type, format, and sparsity. Second, the
relationships present between the ICD-9 codes and sur-
vey questions may be important, although not necessar-
ily discriminative. Therefore, regular predictive models
may overlook them. Third, there is a trade-off between
data-driven grouping and prior-knowledge driven group-
ings, which should be taken into account by the model.

In this paper, we propose an integrative framework
to address the above issues in a systematic way. In-
tegration of multiple datasets for biomarker discovery
techniques can be broadly classified into two groups: 1)
Predictive models ([6], [7] provides a good survey on
several kernel fusion methods) and 2) Feature extrac-
tion based biomarker discovery techniques [11, 5]. The
goal of the predictive model based approaches is to build
classification models with high accuracy, but often such
techniques do not yield easily interpretable results. In
contrast, biomarkers (that are constructed using a small
number of features) can be directly useful in diagnosis,
treatment or prevention, but equally as important; they
can also provide insights into the underlying nature of
the disease or related biomedical processes. Hence we
focus only on such techniques in this paper to find in-
terpretable ICD-9 code groups.

Among the feature extraction based techniques,
canonical correlation analysis (CCA) [8] is one of the
most popular technique for data integration, because
it can find natural grouping (by components) in each
dataset and the potential relationships among those
components is measured by correlation. It has been
also shown that CCA has fewer model assumptions than

other integration techniques [5]. Recently, CCA has
been extended for handling high-dimensional data using
different type of regularization including sparsity [18].
CCA has further been generalized to integrate more
than two datasets [10]. However, none of these methods
can take prior knowledge that is available from the CCS
tree into account. Moreover, the existing CCA based
techniques are unable to hanlde datasets of different
types because of their assumptions that all datasets have
vector-based records which have been collected for same
set of samples.

Our proposed framework further extends the CCA
to incorporate the prior knowledge available from the
CCS tree into model development which is different
than the vector-base data format. Moreover, it can also
trade-off between the data-driven knowledge from sur-
vey data and prior-knowledge driven CCS framework.
We also build a classification model to assess the pre-
dictive capability of the obtained components.

1.1 Contributions We aim to find the groups of
ICD-9 codes that are responsible for improvement of
urinary incontinence. Therefore, we want to build a
model that is both predictive and interpretable. To
enhance the interpretability of the predictive model, we
incorporated several types of knowledge into the model
development process as described below:

• To enhance the interpretability of the model, we
use the clinical classification system (CCS) as the
prior knowledge in the predictive model (baseline
model).

• We want to find the relationship between the ICD-
9 codes and the clinical survey variables to enhance
interpretability. To find such relationships, we use
sparse-CCA first to find the relationships present
among the two datasets and then use those features
along with other useful discriminative features in
a predictive model. We further develop a hybrid
model called sparse hierarchical CCA (SHCCA)
which can take both prior knowledge(CCS) and
clinical survey data into account to enhance clinical
interpretability.

• To assess the interpretability of the obtained ICD-
9 features, we propose a novel metric called I-score
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Figure 1: SHCCA framework containing three types of
data: survey, ICD-9 codes and CCS hierarchy.

based on search on PubMed articles. Our compo-
nents are more interpretable than the individual
ICD-9 and CCS codes with similar prediction ca-
pability.

• SHCCA can extract relatively more homogeneous
groups of ICD-9 codes, each representing a distinct
subgroup of patients, in contrast to finding a global
set of ICD-9 codes similar to the baseline predictive
models.

2 Method

2.1 The Integrative Predictive Model Frame-

work The main goal of the paper is to utilize as much
information available from other clinical domain to en-
hance the interpretability of the obtained ICD-9 groups
without loosing the baseline predictive power of the
models. In particular, we want to take two other types
of information such as survey data and CCS prior in-
formation into account during grouping ICD-9. How-
ever, integrating these three type of information poses
some computational challenges. First, the datasets are
of very different type. For example, ICD-9 contain bi-
nary, while clinical factors contain binary, ordinal and
numeric data. The ICD-9 codes are very sparse (< 2%
density) in compare to the dense clinical data. Sec-
ond, there may be some relationships present among
the two types of data. For example, a subgroup of
patients with mental disorder may have gone through
same set of interventions in the homecare. Although
these factors may not be discriminative and thus will
be missed by the traditional predictive models. Third,

CCS hierarchical tree provide completely different type
of information containing relationship present among
ICD-9 codes only. Moreover, they are not stored in
traditional record based datasets similar to ICD-9 and
survey data as shown in Figure 1. To address these
three challenges, we will first describe how to leverage
survey data to group the ICD-9 and then finally taking
CCS prior knowledge into account.

2.1.1 Bringing survey data into grouping ICD-

9 The easiest way to integrate the ICD-9 and survey
data is to concatenate the two datasets together and
then build a predictive model such as LASSO as de-
scribed earlier. However, this will not be able to handle
the disparate nature of the two datasets as described
earlier. Thus sparse ICD-9 data are more likely to be
lost, since the co-efficients of dense survey data will
dominate the results. Also, such predictive model will
not be able to find relationships present among the types
of features. Moreover, such predictive model only fo-
cuses on providing one global set of biomarkers. Thus,
it cannot provide information about disease heterogene-
ity, where different set of biomarkers affect different set
of population. We want to leverage canonical correla-
tion analysis (CCA) based approach to handle all these
issues. Instead of merging the two datasets before per-
forming the analysis, CCA confines in finding compo-
nents from each of the two datasets such that the com-
ponents are maximally correlated. This correlation can
help find relationships between two datasets. Moreover,
each component can correspond to one homogeneous
subgroup of the dataset. We used sparse CCA (SCCA)
approach for our analysis, because this will perform fea-
ture selection from both dataset as well, which will en-
hance the interpretability. We will describe the SCCA
algorithm briefly as follows. Let X be a n × p matrix
containing p sparse ICD-9 codes and Y be the n×q ma-
trix containing q survey questions observed on same n
observations. CCA tries to find the linear combination
of X and Y such that they are maximally correlated.
Therefore, we want to find coefficient vectors wx and wy

from X and Y respectively such that

corr(w′

xX,w′

yY ) =
w′

xCXY wy
√

w′

xCXXwx

√

w′

yCY Y wy
(2.1)

is maximized where CXX ,CXY and CY Y are the
variance matrix of X, covariance matrix for X and Y
and variance matrix of Y, respectively. We can easily
see that the correlation is invariant to the any arbitrary
scaling of wx and wy (by replacing wx by a ∗ wx).
Therefore, equation 2.1 can be re-written as
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maxwx,wy
w′

xCXY wy

subject to w′

xCXXwx = 1,
w′

yCY Y wy = 1

(2.2)

Lets define a change of basis u = C
1/2
XXwX and

v = C
1/2
Y Y wY . Substituting them in equation 2.2, we

get

max
u,v

u′C
−1/2
XX CXY C

−1/2
Y Y v(2.3)

such that u′u = v′v = 1.
Among many such solutions of equation 2.3, we fol-

low [12], where the solution u and v can be computed
as the singular valued decomposition of sample correla-

tion matrix K = C
−1/2
XX CXY C

−1/2
Y Y and then substitut-

ing them back on the original basis to get wx and wy.
However, performing linear combination on all the fea-
tures of X and Y will lead to too many features which
will lack biological interpretation. To perform feature
selection along with finding the co-efficient vectors, we
perform sparse canonical analysis (SCCA) [18] where
additional L1 constraints were imposed on wx and wy

as below.

maxwx,wy
w′

xCXY wy

subject to w′

xCXXwx = 1,
w′

yCY Y wy = 1,
‖wx‖1 ≤ λx,
‖wy‖1 ≤ λy

(2.4)

After the change of basis, the sparseness is imposed
on the loading vectors u and v controlled by λx and
λy which determine how many parameters to be se-
lected. The SCCA solutions obtained by integrating
icd-9 dataset and the survey data will lead to finding
groups of ICD-9 that are not related among themselves
but also correlated with the the selected survey data.

2.1.2 Taking CCS Prior Knowledge into Ac-

count In this section, we will describe how bring prior
CCS information will lead to more interpretable solu-
tions. Lets consider the example of Figure 1. To take
the prior CCS tree structure into account, we need to pe-
nalize less for grouping the ICD-9 codes that are closer
to each other in the CCS tree. Lets considerH be such a
matrix that contain the similarity matrix between each
pair of ICD-9 codes to represent the closeness in the
CCS tree. Intuitively, this prior knowledge is parallel to
the covariance matrix CXX computed from the data as
in equation 2.2. Intuitively, we want to tradeoff between
these two matrices: the prior knowledge based similarity
H and data-driven similarity matrix CXX . The trade-
off is imposed by introducing a new parameter λh = [01]

in equation 2.4. When λh = 0 the solution is exactly
equal to those of SCCA, while λh = 1 leads to ICD-9
codes that are purely similar based on the CCS tree H.
We will call these as Sparse Hierarchical CCA(SHCCA).

maxwx,wy
w′

xCXY wy

subject to w′

x[(1− λh)CXX + λhH]wx = 1,
w′

yCY Y wy = 1,
‖wx‖1 ≤ λx,
‖wy‖1 ≤ λy

(2.5)

After the change of basis similar as described in
equation 2.4, the solution can be obtained from the
new sample correlation matrix Kh = [(1 − λh)CXX +

λhH]−1/2CXY C
−1/2
Y Y . Note that matrices CXX , CY Y

and H have to be non-singular, which is ensured by
computing them from the data with regularization if
required, as mentioned in [3]. In this section we will
first describe how to calculate the similarity matrix H
from CCS tree followed by the detailed algorithm for
computing the solution of equation 2.5.

Computing CCS similarity: The similarity be-
tween any two ICD-9 codes was determined based on
the depth of their lowest common ancestor(LCA) in the
tree. However, some of the ICD-9 codes are not la-
beled upto the 4th level if the tree(e.g.,875.0 and 95 in
Figure 1). Therefore, we normalize that metric by the
maximum depth of individual ICD-9 codes. Note that
similar type was edge-based similarity measure has also
been applied in other biological ontologies such as gene
ontology [14]. More formally, it is defined as below:

Hij =
depth(LCA(Xi, Xj))

max(depth(Xi), depth(Xj))
(2.6)

Finding the solution of SHCCA: Finding the
solution of SHCCA relies on finding the SVD of the
sample correlation matrix Kh approximated by the first
singular vectors. We used the two parameter λx and
λy as soft-thresholding parameters to perform feature
selection on the datasets X and Y, which is similar to
LASSO [13]. In addition, we have the third parameter
λh which is used to incorporate the prior knowledge
measured by H into account. We used an iterative soft-
thresholding algorithm for performing SHCCA similar
to [13]. This will lead to the first component of u1

and v1, where u1 = [(1 − λh)CXX + λhH]1/2wX and

v1 = C
1/2
Y Y wY from equation 2.5. The second canonical

component u2 and v2 can be computed such that they
are orthogonal to the other components. This can be
computed as below from the SVD solution of Kh.
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Kh =

k
∑

i=1

ui ∗ di ∗ v
′

i.(2.7)

Therefore, the successive components of ui and vi
can be computed as the SVD of the remaining sample
correlation matrix {Kh}i = Kh −

∑k−1

i=1
diuiv

′

i. The
algorithm is given in the supplementary section.

3 Experimental Setup

3.1 Dataset: We collected a large EHR data for
270068 patients from 281 home healthcare (HHC) agen-
cies. In particular, we collected 6800 distinct ICD-9
diagnosis codes from HHC for each of those patient as
shown in Figure 1. A clinician manually labeled each pa-
tient with at most twelve primary and secondary ICD-9
diagnosis codes during his admission in HHC. Moreover,
the patients were assessed based on several survey ques-
tions related to thier demographic, behavioral, physio-
logical, and psycho-social factors during their admission
and discharge in the homecare agencies. These survey
questions were summarized into 184 variables guided
by domain expert and they were used as an auxiliary
dataset for grouping the ICD-9 diagnosis codes. The
class label was also created based on whether the uri-
nary incontinence improved during their discharge in
compare to the baseline level during admission in HHC.
Furthermore, prior information is also available for the
ICD-9 codes in the form of clinical classification soft-
ware(CCS) [2]. CCS has been developed and main-
tained by Agency for Healthcare Research and Qual-
ity (AHRQ) to systematically manage the relationship
among several ICD-9 diagnosis codes into a multi-level
hierarchical tree. The root contains very generic terms
while leaves contain the most specific terms. Therefore,
a CCS term is a summarization of several correlated
ICD-9 codes. In this paper, we used 4-level tree con-
taining 15073 CCS terms which finally contain all the
6800 ICD-9 codes downloaded from [2].

A few preprocessing steps were performed on the
datasets guided by domain experts. For example,
the samples with no scope of improvement (highest
urinary incontinence score during admission in the
homecare) were dropped from the analysis, which led
to ultimately 121956 samples. The very rare ICD-
9 codes (occurrence in fewer than 10 samples) were
removed which ultimately led to 2705 ICD-9 codes.
The categorical variables in the survey questions were
converted into binary variables, each corresponding to
one category. Finally, we ended up with 184 survey
questions.

0 10 20 30 40 50

0.57

0.58

0.59

0.6

0.61

0.62

0.63

No. of components

A
U
C

 

 

SHCCA

ICD−9

CCS

Figure 2: AUC scores for the three methods.

3.2 Evaluation : We evaluated the obtained ICD-
9 codes by two metrics: the prediction power and the
interpretability. The prediction power was assessed by
the area under the ROC curve(AUC) score [16]. We
first describe two baseline predictive models which were
built on ICD-9 and CCS codes. Then, we describe how
the components obtained from SHCCA will be used to
build the final predictive model. Finally, we will discuss
the techniques for assessing the interpretability of the
ICD-9 codes.

3.2.1 Baseline Predictive Models: We created
two baseline models for evaluating the prediction power
of SHCCA. First, we only considered the basic ICD-9
diagnosis codes which are of lowest level of granular-
ity in the CCS hierarchy. Second, we used all internal
nodes of the CCS hierarchy. CCS provides a systematic
clusters of the related ICD-9 codes and thus, provides
a natural summarization of ICD-9 codes. Therefore,
if we build the predictive model on the CCS terms, it
can provide more correlated ICD-9 codes. We converted
ICD-9 feature space into CCS feature space by taking
the most conservative approach. In particular, we cre-
ated a binary data set with 650 CCS codes (the internal
nodes of CCS tree), where we denoted the presence of
a CCS code for a particular patient if any of the ICD-9
codes belonging to the subtree rooted at that CCS node
was present in that sample. Among different predictive
models, we choose LASSO based regularized model [17]
because of its inbuilt feature selection technique using
L1 penalty on the coefficients of the solution. Selecting
a few most important features in that way will par-
ticularly help in interpreting the obtained features by
domain expert, which is the main goal of the paper.
Furthermore, we used adaptive LASSO [19] to increase
the stability of the obtained co-efficients of both ICD-9
and CCS baseline models.
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3.2.2 Building Predictive Model on SHCCA

Components: To assess the prediction power of the
SHCCA components, we first transform the original
ICD-9 data into the newly formed K components of
ICD-9 codes. We multiply the original data matrix
with component vector obtained from SHCCA into
a new matrix of n × k, where k is the number of
components obtained from SHCCA. To evaluate the
prediction power of SHCCA method, we used two
cross-validation (CV) frameworks. The external CV
was used to find the prediction error of the predictive
method built on the SHCCA components using a logistic
regression model. For each of the training dataset,
a 5-fold internal CV was further used to tune the
parameters of SHCCA namely λu and λv (described
later in the parameter selection section). We treated λh

as an independent parameter since that is not related
to the feature selection process from the two datasets.

3.2.3 Assessing Interpretability: The main goal
of the paper was to improve the interpretability of the
ICD-9 groups obtained from predictive models. There-
fore, we evaluated the obtained ICD-9 codes rigorously
based on their interpretability. First, the ICD-9 groups
were analyzed by domain experts (also the co-author of
the paper). The main evaluation criteria was whether
the obtained groups of ICD-9 codes is coherent repre-
senting similar type of pathology or disease symptoms.
Second, we propose a novel measure called I-score to
quantify the coherence of the obtained ICD-9 groups us-
ing the PubMed articles [1]. In particular, we searched
each pair of the terms belonging to same group (or com-
ponents of SHCCA) for their co-occurrence in the same
article. Intuitively, the higher the terms co-occur in
PubMed article, the more coherently they represent an
underlying disease. Let ti and tj be two sets of PubMed
articles containing i-th and j-th ICD-9 terms, respec-
tively. Then, a Jaccard similarity measure [16] was de-
fined to assess the semantic similarity of the two terms
based on the intersection and the union of two terms.
Finally, all such semantic similarities between each pos-
sible pairs were summarized as the final similarity of the
cluster. Note that the co-occurrence (thus the union of
the two terms) of two terms is very rare and therefore,
the I-score is low in general.

I − score(C) =
∑

i

∑

j

(ti ∩ tj)/(ti ∪ tj)(3.8)

4 Results

Initially, we will show the predictive power of SHCCA
components in compare to the two baseline methods
built on CCS and ICD-9 codes. Figure 2 represents the

0.4
0.16

0.064
0.0256

0.01024
0.004096

0.4
0.16

0.064
0.0256

0.01024
0.004096

0.2

0.25

0.3

0.35

0.4

lambda_ulambda_v

co
rr

_t
es

t

Figure 4: Effect of the sparseness parameter on the
average test correlation.

area under the ROC curve (AUC) of the three meth-
ods for different number of features (components for
SHCCA) selected by the LASSO model. Among the
three models, ICD-9 provides best overall prediction
power. The prediction power of both ICD-9 and CCS
model improves when the number of selected features in-
creases. On the other hand, CCS provides better predic-
tive power in the beginning, but saturates as the number
of features increases. On the other hand, SHCCA (with
best parameter of λh = 0.8, λh = 0.16, and λv = 0.0016)
performs slightly better than both of the baseline meth-
ods. The AUC score of SHCCA does not vary too much
on the λh value with range between 0.59 and 0.62 (Sup-
plementary section). It is quiet natural for ICD-9 codes
to have the best predictive power, because that is the
lowest level of granularity in terms of feature selection
and the LASSO model only picks the ICD-9 codes that
have best predictive power. However, as the number of
features go beyond more than 20, the interpretability of
the ICD-9 codes becomes harder since the ICD-9 codes
seem very disparate in nature (Supplementary section
for full list of ICD-9 codes). In contrast, each of the
CCS and SHCCA components represents a cluster of
ICD-9 codes, which may not be necessarily best predic-
tive features. However, Figure 2 shows that even those
groups are almost equally predictive as the raw ICD-
9 codes. Note that the main purpose of this study is
to group ICD-9 codes into more interpretable clusters
rather than only solely developing predictive model.

The interpretability of the SHCCA method is
greatly enhanced in compare to the two baseline meth-
ods. Figure 3 represents the interpretability score (I-
score) of SHCCA in compare to two baseline methods
for λh = 0, i.e., without bringing any prior informa-
tion. The left subfigure of this figure shows the I-score
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Figure 3: I-score of baseline methods

of the two baseline methods when built by successively
adding features into the model. On the other hand,
the I-score of each component of SHCCA is shown on
the right subfigure. The I-score is greatly enhanced by
SHCCA (from 0.015 to 0.165), which shows the effec-
tivity of bringing survey data into account. Note that,
PubMed contains a large number of articles containing
any of the two terms being searched. However, find-
ing co-occurrence of two disease codes (referred as co-
morbidity in medical domain) is very rare. Therefore,
even though absolute value of the I-score is low in com-
pare to the perfect score of 1, the improvement of 0.15
is very significant. We also examined the ICD-9 groups
selected by the two baseline methods (top 20 features
with highest LASSO co-efficients are shown for ICD-9
and CCS codes) and the SHCCA as in Table 2 and Table
3, respectively. Then, our domain experts evaluated the
ICD-9 obtained from three methods. It turned out that
the components selected by SHCCA are more coherent
representing one underlying socio-psychological status
of the patients. The ICD-9 codes shown in Table 2
represents codes from several diseases such as heart dis-
ease, radiological procedure, Alzheimerś disease, paral-
ysis and so on. CCS terms are more interpretable in
terms of representing only three major types of disease
such as disease related to nervous system, several con-
genital anomalies, decubitus ulcer, and so on. On the
other hand, Table 3 represents three top components
from ICD-9 codes and survey data both. The first com-
ponents represent the ICD-9 codes that are only related
to several neurological disorders. More interestingly, the

corresponding survey features also exactly matches with
socio-psychological functions such as old age, poor cog-
nitive function, speech, prior memory loss, memory de-
ficiency and higher confusions. Similarly, the second
component is more related to dysphagia, gastronomy,
and blindness which lead to poor self-management skill.
The component consists of several aftercare therapies,
which is confirmed by prior surgical wound observed in
survey data.

We also studied the effect of bringing prior knowl-
edge into SHCCA. Therefore, the λh was varied inde-
pendently between the range [0 : 0.2 : 1], with λh = 0
means no prior information included, while λh = 1
means only prior information is included. We found
that λh = 0.8 provided best predictive power as showed
in Supplementary Figure 2. We also checked how the
interpretability varies with the increment of λh, however
we only consider the first component for this analysis.
It turned out that the I-score remains almost same to
0.075 for all λh. However, the size of the components
(number of the ICD-9 codes selected) becomes larger
as more prior information is included. For example, 37
ICD-9 codes (Supplementary section) were selected for
λh = 0.6 in the first component as oppose to only four
ICD-9 codes selected when no prior was included (Ta-
ble 3). Actually, the 37 components comprise most of
the ICD-9 codes represented by three subtrees rooted
in three CCS level-3 codes representing dementia, tran-
sient mental disorders and persistent mental disorders,
which are very related mental disorders. Note that,
since we computed I-score by all of its pairwise I-score,
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as the components become larger, it is more likely to
have lower I-score. In our cases, bringing prior CCS in-
formation provides larger but very coherent ICD-9 with-
out any loss of I-score. Therefore, bringing CCS prior
information is important for both increasing the predic-
tion power and interpretability of the SHCCA.

4.1 Effect of the Parameters: We also studied the
effect of the sparseness parameters of the two methods.
Since, we normalize the canonical vectors u and v
in each step of the algorithm, the maximum value
that any individual canonical co-efficients can have is
1. Therefore, the maximum value of λX and λY is
2. However, we found that if these parameters are
set too high(≥ 0.5) no variable selection is performed.
Therefore, we searched exponentially within the range
of [0, 0.4] for tuning these parameters using a k-fold
CV framework as mentioned earlier. For each of the
CV run, SHCCA was computed for each combination
of the two parameters on the training dataset and then,
the obtained co-efficients from the training dataset were
used to compute the correlation on the test dataset
similar to [18] as defined below:

corr =
1

k

k
∑

j=1

|cor(Xju
−j , Yjv

−j)|(4.9)

Here Xj represents the j-th test set and the u−j

represents the canonical co-efficients learnt from the cor-
responding training data. Finally, the test correlation
was averaged over the k-fold CV steps and the parame-
ters yielding to largest average correlation was used for
building the final predictive model in the outer CV for
loop. The average correlation lead to a kind of con-
vex function. In most of the cases, it lead to the λu =
[0.0016, 0.16] for ICD-9 codes and λv = [0.0016, 0.1] for
survey data.

5 Conclusion

In this paper, we incorporated several clinical informa-
tion available from a survey survey data and prior in-
formation to group ICD-9 diagnosis codes into more
coherent groups. In particular, we proposed a novel
method to incorporate prior information into a sparse
hierarchical canonical component analysis. The pro-
posed method enhances the interpretability of ICD-9
codes greatly when assessed by both a novel score call
I-score based on search in PubMed articles and clin-
ical interpretation by domain experts. The proposed
SHCCA method can further be extended to take the
class label into account during method development in
our future work. A more systematic score can be also
developed to search PubMed articles by mapping ICD-9

code into Mesh terms for assessing interpretability.
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ICD-9 terms CCS terms
Malignant hypertensive heart disease with heart failure Delirium
Radiological procedure and radiotherapy Congenital hip deformity
Alzheimer’s disease Other paralysis
Attention to Cystostomy Decubitus ulcer
Other paralytic syndromes Other congenital anomalies of urinary system
Neurogenic Bladder Nos Benign neoplasm of uterus
Senile dementia with delusional or depressive features Psychogenic disorders
Multiple sclerosis Other lower gastrointestinal congenital anomalies
Other cerebral degenerations Other nervous system congenital anomalies
Aftercare following surgery of the genitourinary system Other aftercare

Table 2: Top 20 features selected by two baseline models based on ICD-9 and CCS terms.

SHCCA survey
components-1

SHCCA
ICD-9
terms-1

SHCCA survey
components-2

SHCCA ICD-9
terms-2

SHCCA
survey
components-
3

SHCCA ICD-9
terms-3

Age Alzheimer’s
disease

Poor vision Legal blindness Fully granu-
lating surgi-
cal wound

Aftercare for heal-
ing traumatic frac-
ture of hip

Prior memory
loss

Persistent
mental
disorders

Poor speech Dysphagia,
other

Missing sur-
gical wound

Encounter for
change or removal
of surgical wound
dressing

Poor Speech Dementias Worst Speech Dysphagia Knee joint replace-
ment

Frequent Be-
havioral prob-
lem

Cerebral
degenera-
tions

Partially gran-
ulating surgical
wound

Degeneration of
macula and pos-
terior pole

Hip joint replace-
ment

Poor Cognitive
Function

Not healing sur-
gical wound

Non-healing
surgical wound

Aftercare following
surgery of the mus-
culoskeletal system

Medium Confu-
sion

Average feeding
condition

Attention to
gastrostomy

Aftercare following
joint replacement

High Confusion Poor feeding
condition

Hemiplegia
affecting domi-
nant side

Aftercare follow-
ing surgery for
neoplasm

Highest Confu-
sion

Worst feeding
condition

Hemiplegia or
hemiparesis

Aftercare following
surgery of the circu-
latory system

Memory defi-
ciency

Table 3: The main three components of SHCCA with λh = 0, λu = 0.3, and λv = 0.3.
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