Appendix A: ”Mining Low-Support Discriminative Patterns from Dense and High-dimensional Data”

Gang Fang, Gaurav Pandey, Wen Wang, Manish Gupta, Michael Steinbach, Member, IEEE, Vipin Kumar, Fellow, IEEE
I. EXPERIMENTS TO SHOW HOW WELL SupMaxK ESTIMATES DiffSup

In this set of experiments, we study how the members of SupMaxK approximate DiffSup as K increases. There are two approaches for this purpose, i.e. analytical and empirical analysis. In an analytical approach, some assumptions need to be made such as that the data comes from independence model. Such assumptions generally do not hold for real datasets. Therefore, we selected several real datasets from UCI Data Repository [1] and designed an empirical study on the approximation of DiffSup by the members of SupMaxK. The datasets we selected are mushroom, hypo, hepatic and sonar, which have relatively low density or low dimensionality, so that a low DiffSup threshold (0.1) can be used to discover the complete set of discriminative patterns for a comprehensive study on the approximation.

Given a dataset, for each discriminative pattern of size no less than N, we compute the value of its SupMax1, SupMax2, ... and $\text{SupMax}(N-1)$, and compare this sequence of values with its DiffSup, from which we can see how SupMaxK approximates DiffSup with increasing value of K. The results on these datasets are displayed in Figures 1. Several observations can be made:

- Firstly, as K increases, SupMaxK provides a closer and closer approximation of DiffSup. Specifically in the left subfigures, all the patterns have non-decreasing SupMaxK values (shown by the non-decreasing curves). This observation is guaranteed by Lemma 3 and Theorem 1.

- Secondly, SupMax1 generally provides very poor approximation of DiffSup. Specifically, although all the patterns discovered from the four datasets have DiffSup no less than 0.1, most of them have negative SupMax1 values.

- Thirdly, when K goes from 1 to 2, i.e. SupMaxPair, the approximation is improved substantially (shown by the jump of value from $SM1$ to $SM2$). With this improvement, for many discriminative patterns, SupMaxPair ($K = 2$) provides a reasonably good approximation of DiffSup. Take the mushroom dataset as an example, for 200 of the total 285 patterns (70.2%), SupMaxPair has difference less than 0.1 from DiffSup. There are also many patterns whose SupMaxPair values have differences less than 0.1 from DiffSup in the other three datasets: hypo (about (70%)), sonar (about (20%)) and hepatic (about (20%)).

- Finally, when K is increased further to 3 and 4, the computation time increases exponentially, but the approximation improves relatively much less compared to the improvement obtained when K goes from 1 to 2. However, it is worth noting that the differences between SupMaxPair and...
DiffSup can also be large (ranging from 0.1 to 0.4) for many discriminative patterns on all the four datasets, e.g. 30% in the mushroom dataset, about 80% in the hepatic and sonar datasets. For these discriminative patterns, SupMaxK with larger $K \geq 3$ is necessary to provide sufficiently close approximation of DiffSup.

These experimental results indicate that SupMaxPair provides a good balance between the approximation of DiffSup and the computational expense. However, we present the details of this study in the appendix rather than in the main paper due to the space limits (we are already at the maximal 36 pages allowed), and because the highlight of SupMaxPair is not its accurate approximation of DiffSup but the combination of the following three advantages: (i) it is effective for pruning non-discriminative patterns as a lower bound of DiffSup, compared to BiggerSup (an upper bounds of DiffSup) (ii) it is a tighter lower bound for DiffSup compared to SupMax1 (theoretically guaranteed by Lemma 3 and Theorem 1, and also shown in Figure 1) and (iii) it is the only one, among the members of SupMaxK ($K \geq 2$), that is feasible for handling high dimensional datasets. These advantages enable SupMaxPair for discovering additional low-support discriminative patterns from dense and high-dimensional dataset when existing techniques fail to, as extensively discussed in Sections I and IV and demonstrated in Sections VI-A and VI-B.

REFERENCES

Fig. 1. The approximation of DiffSup by the members of SupMax_K with increasing value of K on the three UCI data sets. In the left subfigures, the sequence of values for each pattern (SupMax_1, SupMax_2, SupMax_3, SupMax_4 and DiffSup) are plotted as a curve. The right subfigures are the distribution of the difference between DiffSup and SupMax_2, the value of which measures how close SupMax_2 approximate DiffSup.

(a) Mushroom dataset: 285 discriminative patterns with size greater or equal to 5 and DiffSup no less than 0.1

(b) Hypo dataset: 45 discriminative patterns with size greater or equal to 4 (too few patterns with size ≥ 5) and DiffSup no less than 0.1

(c) Sonar dataset: 385 discriminative patterns with size greater or equal to 5 and DiffSup no less than 0.1

(d) Hepatic dataset: 164 discriminative patterns with size greater or equal to 4 (too few patterns with size ≥ 5) and DiffSup no less than 0.1